scholarly journals Escape probability of particle from Kerr-Sen black hole

2021 ◽  
Vol 964 ◽  
pp. 115313
Author(s):  
Ming Zhang ◽  
Jie Jiang
2020 ◽  
Vol 101 (4) ◽  
Author(s):  
Kota Ogasawara ◽  
Takahisa Igata ◽  
Tomohiro Harada ◽  
Umpei Miyamoto

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Haopeng Yan ◽  
Minyong Guo ◽  
Bin Chen

AbstractWe revisit monochromatic and isotropic photon emissions from the zero-angular-momentum sources (ZAMSs) near a Kerr black hole. We investigate the escape probability of the photons that can reach to infinity and study the energy shifts of these escaping photons, which could be expressed as the functions of the source radius and the black hole spin. We study the cases for generic source radius and black hole spin, but we pay special attention to the near-horizon (near-)extremal Kerr ((near-)NHEK) cases. We reproduce the relevant numerical results using a more efficient method and get new analytical results for (near-)extremal cases. The main non-trivial results are: in the NHEK region of a (near-)extremal Kerr black hole, the escape probability for a ZAMS tends to $$\frac{7}{24}\approx 29.17\%$$ 7 24 ≈ 29.17 % , independent of the NHEK radius; at the innermost of the photon shell (IPS) in the near-NHEK region, the escape probability for a ZAMS tends to $$\begin{aligned} \frac{5}{12} -\frac{1}{\sqrt{7}} + \frac{2}{\sqrt{7}\pi }\arctan \frac{1}{\sqrt{7}}\approx 12.57\% . \end{aligned}$$ 5 12 - 1 7 + 2 7 π arctan 1 7 ≈ 12.57 % .


Nature ◽  
2020 ◽  
Vol 586 (7827) ◽  
pp. 18-19
Author(s):  
Davide Castelvecchi
Keyword(s):  

Nature ◽  
2002 ◽  
Author(s):  
Philip Ball
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document