scholarly journals Fundamental scale invariance

2021 ◽  
Vol 964 ◽  
pp. 115326
Author(s):  
C. Wetterich
Methodology ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 88-95 ◽  
Author(s):  
Jose A. Martínez ◽  
Manuel Ruiz Marín

The aim of this study is to improve measurement in marketing research by constructing a new, simple, nonparametric, consistent, and powerful test to study scale invariance. The test is called D-test. D-test is constructed using symbolic dynamics and symbolic entropy as a measure of the difference between the response patterns which comes from two measurement scales. We also give a standard asymptotic distribution of our statistic. Given that the test is based on entropy measures, it avoids smoothed nonparametric estimation. We applied D-test to a real marketing research to study if scale invariance holds when measuring service quality in a sports service. We considered a free-scale as a reference scale and then we compared it with three widely used rating scales: Likert-type scale from 1 to 5 and from 1 to 7, and semantic-differential scale from −3 to +3. Scale invariance holds for the two latter scales. This test overcomes the shortcomings of other procedures for analyzing scale invariance; and it provides researchers a tool to decide the appropriate rating scale to study specific marketing problems, and how the results of prior studies can be questioned.


1991 ◽  
Vol 1 (9) ◽  
pp. 1121-1132 ◽  
Author(s):  
M. Skouri ◽  
J. Marignan ◽  
J. Appell ◽  
G. Porte

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 554
Author(s):  
Jiří Mazurek ◽  
Radomír Perzina ◽  
Jaroslav Ramík ◽  
David Bartl

In this paper, we compare three methods for deriving a priority vector in the theoretical framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method (EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation. As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on average, significantly more sensitive statistically (and thus less robust) and more susceptible to order violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment for the different numbers of pairwise comparisons required by each method. On the other hand, differences in sensitivity and order violation between the GMM and EMM were found to be mostly statistically insignificant.


Author(s):  
Trond S. Ingebrigtsen ◽  
Thomas B. Schrøder ◽  
Jeppe C. Dyre
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document