scholarly journals 3D mapping of the effective Majorana neutrino masses with neutrino oscillation data

2021 ◽  
pp. 115521
Author(s):  
Ce-ran Hu ◽  
Zhi-zhong Xing
2012 ◽  
Vol 27 (13) ◽  
pp. 1230015 ◽  
Author(s):  
S. M. BILENKY ◽  
C. GIUNTI

In this brief review we discuss the generation of Majorana neutrino masses through the seesaw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of ϑ13, and the interpretation of the results of neutrinoless double-beta decay experiments.


Author(s):  
Bipin Singh Koranga ◽  
Vivek Kumar Nautiyal

AbstractWe consider the four neutrino oscillation that accommodate the all neutrino oscillation data. We consider the range of the corresponding mixing parameters by the result of neutrino oscillation experiments. Implicaion of the neutrino oscillation search for the neutrino mass square difference and mixing are discussed. We determine the possible values of the effective majorana neutrino mass $|<m>|=|{\sum }_{j}U_{ej}^{2}m_{j}|$ | < m > | = | ∑ j U e j 2 m j | in the four neutrino scenario. In the four-neutrino scheme there is an upper bound on | < m > | of the normal mass order is 2.0074eV for α = 0∘,β = 0∘andγ = 0∘. In the case of inverted mass order the upper bound on | < m > | is 2.0069eV for α = 0∘,β = 0∘andγ = 0∘.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jin Sun ◽  
Yu Cheng ◽  
Xiao-Gang He

Abstract General flavor changing Goldstone boson (GB) interactions with fermions from a spontaneous global U(1)G symmetry breaking are discussed. This GB may be the Axion, solving the strong QCD CP problem, if there is a QCD anomaly for the assignments of quarks U(1)G charge. Or it may be the Majoron, producing seesaw Majorana neutrino masses by lepton number violation, if the symmetry breaking scale is much higher than the electroweak scale. It may also, in principle, play the roles of Axion and Majoron simultaneously as far as providing solution for the strong CP problem and generating a small Majorana neutrino masses are concerned. Great attentions have been focused on flavor conserving GB interactions. Recently flavor changing Axion and Majoron models have been studied in the hope to find new physics from rare decays in the intensity frontier. In this work, we will provide a systematic model building aspect study for flavor changing neutral current (FCNC) GB interactions in the fermion sectors, or separately in the quark, charged lepton and neutrino sectors and will identify in detail the sources of FCNC interactions in a class of beyond standard model with a spontaneous global U(1)G symmetry breaking. We also provide a general proof of the equivalence of using physical GB components and GB broken generators for calculating GB couplings to two gluons and two photons, and discuss some issues related to spontaneous CP violation models. Besides, we will also provide some details for obtaining FCNC GB interactions in several popular models, such as the Type-I, -II, -III seesaw and Left-Right symmetric models, and point out some special features in these models.


2003 ◽  
Vol 18 (22) ◽  
pp. 3921-3933 ◽  
Author(s):  
M. LINDNER

Future long baseline neutrino oscillation (LBL) setups are discussed and the remarkable potential for very precise measurements of mass splittings, mixing angles, MSW effects, the sign of Δm2 and leptonic CP violation is shown. Furthermore we discuss the sensitivity improvements which can be obatined by combining the planned JHF-Superkamiokande and the proposed NuMI off-axis experiment.


1994 ◽  
Vol 417 (1-2) ◽  
pp. 151-166 ◽  
Author(s):  
N.J. Evans ◽  
D.A. Ross

2020 ◽  
Vol 961 ◽  
pp. 115212 ◽  
Author(s):  
Jean Alexandre ◽  
Nick E. Mavromatos ◽  
Alex Soto

Sign in / Sign up

Export Citation Format

Share Document