neutrino oscillation
Recently Published Documents


TOTAL DOCUMENTS

1117
(FIVE YEARS 152)

H-INDEX

69
(FIVE YEARS 6)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Hrishikesh Chakrabarty ◽  
Debasish Borah ◽  
Ahmadjon Abdujabbarov ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov

AbstractWe study the effects of gravitational lensing on neutrino oscillations in the $$\gamma $$ γ -spacetime which describes a static, axially-symmetric and asymptotically flat solution of the Einstein’s field equations in vacuum. Using the quantum-mechanical treatment for relativistic neutrinos, we calculate the phase of neutrino oscillations in this spacetime by considering both radial and non-radial propagation. We show the dependence of the oscillation probability on the absolute neutrino masses, which in the two-flavour case also depends upon the sign of mass squared difference, in sharp contrast with the well-known results of vacuum oscillation in flat spacetime. We also show the effects of the deformation parameter $$\gamma $$ γ on neutrino oscillations and reproduce previously known results for the Schwarzschild metric. We then extend these to a more realistic three flavours neutrino scenario and study the effects of the parameter $$\gamma $$ γ and the lightest neutrino mass while using best fit values of neutrino oscillation parameters.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
J.-L. Tastet ◽  
O. Ruchayskiy ◽  
I. Timiryasov

Abstract Heavy neutral leptons (HNLs) are hypothetical particles, motivated in the first place by their ability to explain neutrino oscillations. Experimental searches for HNLs are typically conducted under the assumption of a single HNL mixing with a single neutrino flavor. However, the resulting exclusion limits may not directly constrain the corresponding mixing angles in realistic HNL models — those which can explain neutrino oscillations. The reinterpretation of the results of these experimental searches turns out to be a non-trivial task, that requires significant knowledge of the details of the experiment. In this work, we perform a reinterpretation of the latest ATLAS search for HNLs decaying promptly to a tri-lepton final state. We show that in a realistic model with two HNLs, the actual limits can vary by several orders of magnitude depending on the free parameters of the model. Marginalizing over the unknown model parameters leads to an exclusion limit on the total mixing angle which can be up to 3 orders of magnitude weaker than the limits reported in ref. [1]. This demonstrates that the reinterpretation of results from experimental searches is a necessary step to obtain meaningful limits on realistic models. We detail a few steps that can be taken by experimental collaborations in order to simplify the reuse of their results.


Nature ◽  
2021 ◽  
Vol 599 (7886) ◽  
pp. 565-570
Author(s):  
M. Khachatryan ◽  
A. Papadopoulou ◽  
A. Ashkenazi ◽  
F. Hauenstein ◽  
A. Nambrath ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 459
Author(s):  
Maria Concepcion Gonzalez-Garcia ◽  
Michele Maltoni ◽  
Thomas Schwetz

In this contribution, we summarise the determination of neutrino masses and mixing arising from global analysis of data from atmospheric, solar, reactor, and accelerator neutrino experiments performed in the framework of three-neutrino mixing and obtained in the context of the NuFIT collaboration. Apart from presenting the latest status as of autumn 2021, we discuss the evolution of global-fit results over the last 10 years, and mention various pending issues (and their resolution) that occurred during that period in the global analyses.


Author(s):  
Abdel Pérez-Lorenzana

Exchange [Formula: see text] symmetry in the effective Majorana neutrino mass matrix does predict a maximal mixing for atmospheric neutrino oscillations asides to a null mixing that cannot be straightforwardly identified with reactor neutrino oscillation mixing, [Formula: see text], unless a specific ordering is assumed for the mass eigenstates. Otherwise, a nonzero value for [Formula: see text] is predicted already at the level of an exact symmetry. In this case, solar neutrino mixing and scale, as well as the correct atmospheric mixing arise from the breaking of the symmetry. I present a mass matrix proposal for normal hierarchy that realizes this scenario, where the smallness of [Formula: see text] is naturally given by the parameter [Formula: see text] and the solar mixing is linked to the smallness of [Formula: see text]. The proposed matrix remains stable under renormalization effects and it also allows to account for CP violation within the expected region without further constrains.


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
S. Vergani ◽  
N. W. Kamp ◽  
A. Diaz ◽  
C. A. Argüelles ◽  
J. M. Conrad ◽  
...  

2021 ◽  
Vol 16 (11) ◽  
pp. C11007
Author(s):  
N. Chau ◽  
J.P. Athayde Marcondes de André ◽  
V. Van Elewyck ◽  
A. Kouchner ◽  
L. Kalousis ◽  
...  

Abstract The neutrino mass ordering (NMO) is one of the fundamental questions in neutrino physics. KM3NeT/ORCA and JUNO are two neutrino oscillation experiments both aiming at measuring the NMO with different approaches: ORCA with atmospheric neutrinos traversing the Earth and JUNO with reactor neutrinos. This contribution presents the potential of determining the NMO through a combined analysis of JUNO and ORCA data. In a joint fit, the NMO sensitivity is enhanced beyond the simple sum of the sensitivities of each experiment due to the tension between the respective Δm 31 2 best fit values obtained when the wrong ordering is assumed, together with good constraints on this parameter measurement by both experiments. From this analysis, we expect the true NMO to be determined with 5σ significance after 1–2 years of data taking by both experiments for the current global best-fit values of the oscillation parameters, while maximally 6 years will be needed for any other parameter set.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sanjib Kumar Agarwalla ◽  
Sudipta Das ◽  
Mehedi Masud ◽  
Pragyanprasu Swain

Abstract We explore the role of matter effect in the evolution of neutrino oscillation parameters in the presence of lepton-flavor-conserving and lepton-flavor-violating neutral-current non-standard interactions (NSI) of the neutrino. We derive simple approximate analytical expressions showing the evolution of mass-mixing parameters in matter with energy in the presence of standard interactions (SI) and SI+NSI (considering both positive and negative values of real NSI parameters). We observe that only the NSI parameters in the (2,3) block, namely εμτ and (γ − β) ≡ (εττ− εμμ) affect the modification of θ23. Though all the NSI parameters influence the evolution of θ13, εeμ and εeτ show a stronger impact at the energies relevant for DUNE. The solar mixing angle θ12 quickly approaches to ∼ 90° with increasing energy in both SI and SI+NSI cases. The change in ∆$$ {m}_{21,m}^2 $$ m 21 , m 2 is quite significant as compared to ∆$$ {m}_{31,m}^2 $$ m 31 , m 2 both in SI and SI+NSI frameworks for the energies relevant for DUNE baseline. Flipping the signs of the NSI parameters alters the way in which mass-mixing parameters run with energy. We demonstrate the utility of our approach in addressing several important features related to neutrino oscillation such as: a) unraveling interesting degeneracies between θ23 and NSI parameters, b) estimating the resonance energy in presence of NSI when θ13 in matter becomes maximal, c) figuring out the required baselines and energies to have maximal matter effect in νμ → νe transition in the presence of different NSI parameters, and d) studying the impact of NSI parameters εμτ and (γ − β) on the νμ → νμ survival probability.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 417
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone

We analyze the effects of gravity on neutrino wave packet decoherence. As a specific example, we consider the gravitational field of a spinning spherical body described by the Lense–Thirring metric. By working in the weak-field limit and employing Gaussian wave packets, we show that the characteristic coherence length of neutrino oscillation processes is nontrivially affected, with the corrections being dependent on the mass and angular velocity of the gravity source. Possible experimental implications are finally discussed.


Sign in / Sign up

Export Citation Format

Share Document