Experiment for Discrimination between Special Relativity Theory and Covariant Ether Theories

2011 ◽  
Vol 221 ◽  
pp. 386
Author(s):  
W. Potzel ◽  
A.L. Kholmetskii ◽  
U. van Bürck ◽  
R. Röhlsberger ◽  
E. Gerdau
1991 ◽  
Vol 46 (5) ◽  
pp. 419-425 ◽  
Author(s):  
F. Selleri

AbstractBy assuming the validity of the principle of inertia and the existence of a privileged frame, the transformation laws (TL) between inertial frames are investigated in ether theories. For onedimensional space the TL's are fixed up to two undetermined functions of absolute velocity, Δ (v) and E(v). If the principle of relativity is finally assumed, these functions acquire their well known Lorentzian expressions ΔL and EL. It is concluded that special relativity theory is "unstable", in the sense that any shift, however small, of Δ away from ΔL and/or of E away from EL leads to an ether theory. In Earth-based experiments one can expect deviations from c of the two-way and one-way velocity of light of the order of 10-12 and 10 -9 respectively


2000 ◽  
Vol 55 (6-7) ◽  
pp. 563-569 ◽  
Author(s):  
Sidney Golden

Abstract Light-pulses that are reflected recurrently to one another by two kinematically equivalent dynamically identical inertial systems moving collinearly and irrotationally with uniform relative velocity generate sequences of contiguous time-intervals in both. By means of clocks stationed in the two systems, each time-interval is both measurable locally and calculable non-locally in accord with basic requirements of special relativity theory. Their ratio yields the velocity dependent dilation-of-time relation of Einstein, but an equivalent spatially dependent version of it is obtained as well, because the time-intervals involved are actually determined by the distances that exist between the systems when the reflections occur. As a result, the Einstein relation involves no time-rates of clocks that are actually affected kinematically by the systems containing them.


Sign in / Sign up

Export Citation Format

Share Document