An experimental investigation of two-degrees-of-freedom VIV trajectories of a cylinder at different scales and natural frequency ratios

2016 ◽  
Vol 126 ◽  
pp. 187-202 ◽  
Author(s):  
Zhuang Kang ◽  
Wenchi Ni ◽  
Liping Sun
Author(s):  
Duy-Chinh Nguyen

In reality, an inverted pendulum can be used to model many real structures as the fluid tower, super-tall buildings, or articulated tower in the ocean, etc. However, for the inverted pendulum with two degrees of freedom, to the best knowledge of the author, there is no study to determine optimal parameters of two tuned mass dampers (TMD) by using the maximization of equivalent viscous resistance method. Therefore, the current study presents the analytical solutions to the optimization of two orthogonal TMDs, which is used to eliminate vibration of the inverted pendulum with two degrees of freedom. The parameters considered in optimizing are the natural frequency ratios and damping ratios of the two TMDs. The new results of this paper can be summarized as follows: Firstly, the equivalent resistance forces of the two TMDs acting on the inverted pendulum with two degrees of freedom are established. Secondly, the quadratic torque matrices of the vibration response of the inverted pendulum attached with two TMDs is revealed. Thirdly, the optimal expressions are derived using the maximization of equivalent viscous resistance method. The obtained formulae provide exact solutions for the proposed problem. Finally, to confirm the effectiveness of the obtained formulae, parametric studies on vibration are performed for sample articulated tower in the ocean with and without optimal TMDs. Numerical results show that vibrations of the articulated tower attached with optimal TMDs are effectively eliminated. This confirms that the optimal parameters of the two TMDs are determined in this paper are reliable and accurate.


Author(s):  
K. G. P. Folkersma ◽  
S. E. Boer ◽  
D. M. Brouwer ◽  
J. L. Herder ◽  
H. M. J. R. Soemers

Flexure based stages are particularly important for vacuum applications because they combine low hysteresis, no wear and no contamination with a high supporting stiffness. However, flexure hinges inherently lose stiffness in supporting directions when deflected. Therefore the workspace to footprint ratio is limited. In this article we present the design and modeling of a two degrees of freedom cross flexure based stage that combines a large workspace to footprint ratio with high vibration mode frequencies. Because the mechanism is an assembly of optimized components, the stage is designed according to the exact constraint principle to avoid build-up of internal stresses due to misalignment. FEM results have been validated by measurements on an experimental test setup. The test setup has a workspace-area to footprint ratio of 1/32. The lowest measured natural frequency with locked actuators over a 60 × 60mm workspace was 80Hz.


1996 ◽  
Vol 18 (2) ◽  
pp. 43-48
Author(s):  
Tran Van Tuan ◽  
Do Sanh ◽  
Luu Duc Thach

In the paper it is introduced a method for studying dynamics of beating-vibrators by means of digital calculation with the help of the machine in accordance with the needs by the helps of an available auto regulation system operating with high reability.


Sign in / Sign up

Export Citation Format

Share Document