Improved bistable mechanism for wave energy harvesting

2021 ◽  
Vol 232 ◽  
pp. 109139
Author(s):  
Bingqi Liu ◽  
Huanggao Yi ◽  
Carlos Levi ◽  
Segen F. Estefen ◽  
Zhijia Wu ◽  
...  
Nano Energy ◽  
2021 ◽  
pp. 106218
Author(s):  
Haojie Gu ◽  
Nan Zhang ◽  
Zhiyuan Zhou ◽  
Shimeng Ye ◽  
Wenjie Wang ◽  
...  

Author(s):  
Douglas A. Gemme ◽  
Steven P. Bastien ◽  
Raymond B. Sepe ◽  
John Montgomery ◽  
Stephan T. Grilli ◽  
...  

Author(s):  
Qiqi Pan ◽  
Biao Wang ◽  
Lingling Zhang ◽  
Zhongjie Li ◽  
Zhengbao Yang

2021 ◽  
pp. 101578
Author(s):  
Tian-Xue Ma ◽  
Quan-Shui Fan ◽  
Chuanzeng Zhang ◽  
Yue-Sheng Wang

2020 ◽  
Vol 3 (2) ◽  
pp. 73-82
Author(s):  
Benjamin Schubert ◽  
William S. P. Robertson ◽  
Benjamin S. Cazzolato

The dynamic response of a submerged CETO shaped quasi-point absorbing wave energy converter coupled to a bistable power take off is presented in this study. Whilst the impact of bistability has been shown in a limited number of situations to improve the amount of power generated, many models have been restricted to a single degree of freedom and often ignore drag effects. To overcome these model limitations, a submerged single tether point absorber with a bistable power take off was modelled using both 1 and 3 degrees of freedom. The device was subjected to regular waves and included a simple model of viscous drag. The bistable mechanism was provided by a magnetic dipole model quantified by a dimensionless parameter applicable to any bistable system. The performance of the device was is assessed by the theoretical power generated. Over each model, the previously observed benefit of bistability was not consistently obtained. Simulations of regular waves demonstrated an increase in generated power for suboptimal conditions for some frequencies, while a reduction in generated power was observed in optimal conditions. The performance increase showed strong correlation to the phase relationship between the motion and exciting forces as a result of bistability.


Sign in / Sign up

Export Citation Format

Share Document