exciting forces
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Jiuhui Wu ◽  
Shaokun Yang

Abstract In this paper, a novel kind of anti-gravity technology by non-positive equivalent mass of aircraft is presented to try to reveal UFO flying secrets. Starting with a two-degree-of-freedom system, it is found that the system could produce an infinite acceleration under the condition of zero dynamic equivalent mass[1], and also provide a movement opposite to the direction of the external force under the negative equivalent mass[2]. These two cases with non-positive equivalent mass[3] could both be regarded as a novel kind of anti-gravity technology[4,5], which is also verified by a designed dynamic simulation experiment. For any aircraft that can be regarded as a multi-degree-of-freedom system driven by engine or other external forces[6], the non-positive equivalent mass could be designed out once the external input including gravity and engine exciting forces is known[7]. Thus the anti-gravity technology for any aircraft could be realized, which could also be extended to matters related to flight, such as space ships, missiles, airplanes, etc[8].


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 469
Author(s):  
Theofanis Karambas ◽  
Eva Loukogeorgaki

In the present work, a Boussinesq-type numerical model is developed for the simulation of nonlinear wave-heaving cylinder interaction. The wave model is able to describe the propagation of fully dispersive and weakly nonlinear waves over any finite water depth. The wave-cylinder interaction is taken into account by solving simultaneously an elliptic equation that determines the pressure exerted by the fluid on the floating body. The heave motion for the partially immersed floating cylinder under the action of waves is obtained by solving numerically the body’s equation of motion in the z direction based on Newton’s law. The developed model is applied for the case of a fixed and a free-floating circular cylinder under the action of regular waves, as well as for a free-floating cylinder undergoing a forced motion in heave. Results (heave and surge exciting forces, heave motions, and wave elevation) are compared with those obtained using a frequency domain numerical model, which is based on the boundary integral equation method.


2021 ◽  
Vol 9 (12) ◽  
pp. 1425
Author(s):  
Shueei-Muh Lin ◽  
Yang-Yih Chen ◽  
Chihng-Tsung Liauh

This research proposes a mooring design which keeps the turbine ocean current, static, balanced, and fixed at a predetermined depth under water, to ensure that the ocean current generator can effectively use current to generate electricity, and that the water pressure remains adequate value before critical pressure damage occurs. In this design, the turbine generator, which withstands the force of ocean currents, is mounted in front of a floating platform by ropes, and the platform is anchored to the deep seabed with light-weight high-strength PE ropes. In addition, a pontoon is connected to the ocean current generator with a rope. The balance is reached by the ocean current generator weight, floating pontoon, and the tension of the ropes which are connected between the generator and floating platform. Therefore, both horizontal and vertical forces become static and the depth can be determined by the length of the rope. Because the floating platform and pontoons on the water surface are significantly affected by waves, the two devices subjected to the wave exciting forces are further affected by the movement of the platform, pontoons, turbines, and the tensions of the ropes. Among them, the exciting forces depend on the operating volume of the two devices. Moreover, there is a phase difference between the floating platform and the pontoon under the action of the waves. In this study, the linear elastic model is used to simulate the motion equation of the overall mooring system. A theoretical solution of the static and dynamic stability analysis of the mooring system is proposed. The dynamic behaviors of the turbine, the floating platform, the pontoon, and the tension of the rope under the effects of waves and ocean currents are investigated. The study found the relationship of the phase difference and the direction difference of waves and ocean currents, the wavelength, and the length of the rope between the carrier and the turbine. It was found that the phase difference has a great influence on the dynamic behaviors of the system. The length of the rope can be adjusted to avoid resonance and reduce the rope tension. In addition, a buffer spring can be used to reduce the dynamic tension of the rope significantly to ensure the safety and life of the rope.


2021 ◽  
Vol 9 (9) ◽  
pp. 923
Author(s):  
Jeong Cheol Park ◽  
Chien Ming Wang

The hydrodynamic behaviour of floating regular polygonal platforms under wave action was studied by conducting parametric studies. Considering triangular, square, hexagonal, and circular platforms of similar size and draft, the results show that their added mass, radiation damping, and RAOs are similar. However, the wave exciting forces are slightly different, particularly the horizontal forces. The polygonal platforms oriented with one of its corners in line with the prevailing wave direction can lead to a reduction in the horizontal force on the platform, a feature that helps in reducing the cost of a mooring system. Moreover, such oriented platforms are able to disperse the waves better in multiple directions and hence will not pose problems for ships or marine vessels passing by the platform on the weather side. Thus, the orientation of a polygonal platform is an important design consideration. From the comparison study among different polygonal platforms, their wave attenuation performances are slightly similar. The hydrodynamic analyses performed herein for the parametric studies were sped up considerably by using a significantly lesser number of Fourier coefficient sets for the series functions that define the velocity potentials when compared to those used by previous researchers in their analytical approaches. The adoption of the radius function defined by cosine-type radial perturbation does not only generate the geometric boundaries of polygonal platforms, but it also simplifies the formulation and quickens the computations.


2021 ◽  
Vol 8 (3) ◽  
pp. 127-139
Author(s):  
Insik Chun ◽  
In-Ki Min ◽  
Yongchim Min ◽  
Byungcheol Oh ◽  
Jaeseol Shim

The prediction of the performance of a wave observation buoy is very important to acquire both in-situ security and good observation quality. In the present study, a numerical method was set up to analyze the dynamic interaction of a spherical buoy with its single point mooring line subject to regular wave conditions. The method was applied to the condition of an existing hydraulic experiment, producing results that are well compatible with experimental results within the limited accuracy of the available data. It was argued that some discrepancies between the numerical and experimental results might be due to the uncertainties of the wave exciting forces acting on the buoy and the experimental conditions of mooring line. The method was finally applied to demonstrate two practical issues related to in-situ wave height measurements; the effect of buoy size on resulting heave motion and the aspect of the numerical integration of heave acceleration to get wave profile.


Author(s):  
Xiaolong Fu ◽  
Deyou Li ◽  
Hongjie Wang ◽  
Guanghui Zhang ◽  
Xianzhu Wei

Pumped-storage power technology is currently the only available energy storage technology in the grid net, and its reliability is receiving attention increasingly. However, when a pump-turbine unit undergoes runaway transitions, hydraulic fluctuations intensively affect the reliable operation of a pumped-storage power station. To reduce hydraulic fluctuations, this study investigated the formation mechanism of hydraulic fluctuations and explored its influence factors. In this study, a developed one-dimensional and three-dimensional (1 D-3D) coupling simulation method was adopted. Transient runaway transitions of a pump-turbine with three different inertias (0.5 J, 1 J, and 2.0 J) at three different guide vane openings (21°, 15°, and 12°, respectively) were simulated and compared. The results suggest that, at smaller guide vane openings (15° and 12°), water hammer owing to the increase in rotational speed is the primary unstable issue compared to the pulsation of radial hydraulic exciting forces on the runner. However, at a larger guide vane opening (21°), the latter owing to the back-flow near the runner inlet is the primary unstable issue. Moreover, it is found that a sufficiently large inertia improves the hydraulic fluctuations of the pump-storage power station, particularly in reducing the pulsation of radial hydraulic exciting loads on the runner. The findings of this study provide a valuable reference for determining suitable rotor inertia.


Author(s):  
Xueliang Zhang ◽  
Wenchao Hu ◽  
Zhiguo Gao ◽  
Yunshan Liu ◽  
Bang-Chun Wen

In the present work, a new dynamical model with a single rigid frame driven by two pairs of vibrators, of which each pair of vibrators is engaged with each other by gear mechanism, is proposed to explore the composite synchronization of the system. The motion differential equations and vibration responses of the system are given first. The theory condition for achieving composite synchronization of the system is obtained, by using the average method to deduce the average torque balance equations of the two pairs of vibrators. According to the Hamilton’s theory, the system stability condition is presented, and it is mainly determined by the structural parameters of the system. The synchronous stable regions and stability ability versus the key parameters of the system are qualitatively discussed in numeric, and further quantitatively verified by simulations. It is shown that, in engineering, the reasonable working points of the system, should be selected in the region where the stable phase difference of the two pairs of vibrators is stabilized in the vicinity of zero. Only in this way, can the exciting forces of the two pairs of vibrators be positively superposed, and the linear motion of the system in the vertical direction be realized.


Author(s):  
В.Ю. Семенова ◽  
К.И. Баканов

В статье рассматривается определение возмущающих сил и моментов и амплитудно-частотных характеристик возникающих при совместной качке двух судов в условиях мелководья параллельно вертикальной стенке на основании решения трехмерной потенциальной задачи. Определение потенциалов дифрагированного волнения, необходимых для расчетов возмущающих сил, осуществляется на основании методов интегральных уравнений и зеркальных отображений. Представленное решение в отечественной практике является новым. В статье приводятся результаты расчетов возмущающих сил и амплитудно-частотных характеристик поперечно-горизонтальных, вертикальных и бортовых колебаний, возникающих при качке двух одинаковых судов, расположенных лагом к волнению и параллельно вертикальной стенке в зависимости от изменения расстояний как между судами, так и между судами и вертикальной стенкой. Проводится исследование влияния различных фарватеров на величины возмущающих сил и амплитудно-частотных характеристик, а именно: мелководного фарватера, мелководного фарватера с вертикальной стенкой, мелководного фарватера со вторым параллельно качающимся судном и мелководного фарватера с вертикальной стенкой и вторым судном. Таким образом, в работе учитывается одновременное влияния мелководья, вертикальной стенки и второго судна. Показано увеличение значений возмущающих сил при уменьшении расстояний между судами и между судами и вертикальной стенкой. Также показано значительное совместное влияние вертикальной стенки и второго судна на амплитудно-частотные характеристики по сравнению со случаем качки судна на мелководье. The article discusses the determination of the exciting forces and moments and amplitude-frequency characteristics arising from the coupled motions of two ships in shallow water conditions parallel to the vertical wall based on the solution of a three-dimensional potential problem. The determination of the potentials of diffracted waves, necessary for calculating the exciting forces, is carried out on the basis of the methods of integral equations and mirror images. The presented solution is new in domestic practice. The article presents the results of calculations of exciting forces and amplitude-frequency characteristics of swaying, heaving and rolling arising from the motions of two identical ships located in the beam waves and parallel to the vertical wall, depending on the change in the distances both between ships and between ships and vertical wall. A study of the influence of various waterways on the magnitude of exciting forces and amplitude-frequency characteristics is being carried out, namely: a shallow waterway, a shallow waterway with a vertical wall, a shallow waterway with a second parallel oscillating ship and a shallow waterway with a vertical wall and a second ship. Thus, the work takes into account the simultaneous influence of shallow water, vertical wall and the second ship. An increase in the values ​​of the exciting forces is shown with a decrease in the distances between ships and between ships and the vertical wall. A significant joint effect of the vertical wall and the second ship on the amplitude-frequency characteristics is also shown in comparison with the case of the ship oscillating in shallow water.


Author(s):  
Jiacheng Zhou ◽  
Chao Hu ◽  
Ziqiu Wang ◽  
Zhengfa Ren ◽  
Xiaoyu Wang ◽  
...  

By studying dynamic characteristics of the leaf spring system, a new elastic component is designed to reduce the working load and to a certain extent to ensure the linearity as well as increase the amplitude in the vertical and horizontal directions in vibration screen. The modal parameters, amplitudes, and amplification factors of the leaf spring system are studied by simulation and experiment. The modal results show that the leaf spring system vibrates in horizontal and vertical directions in first and second mode shapes, respectively. It is conducive to loosening and moving the particles on the vibration screen. In addition, it is found that the maximum amplitude and amplification factor in the horizontal direction appear at 300 r/min (5 Hz) while those in the vertical direction appear at 480 r/min (8 Hz), which are higher than those in the disc spring system. Moreover, the amplitude of the leaf spring system increases proportionally with the increase of exciting force while the amplification factors are basically the same under different exciting forces, indicating the good linearity of the leaf spring system. Furthermore, the minimum exciting force occurs in the leaf spring system under the same amplitude by comparing the exciting force among different elastic components. The above works can provide guidance for the industrial production in vibration screen.


2020 ◽  
Vol 3 (2) ◽  
pp. 73-82
Author(s):  
Benjamin Schubert ◽  
William S. P. Robertson ◽  
Benjamin S. Cazzolato

The dynamic response of a submerged CETO shaped quasi-point absorbing wave energy converter coupled to a bistable power take off is presented in this study. Whilst the impact of bistability has been shown in a limited number of situations to improve the amount of power generated, many models have been restricted to a single degree of freedom and often ignore drag effects. To overcome these model limitations, a submerged single tether point absorber with a bistable power take off was modelled using both 1 and 3 degrees of freedom. The device was subjected to regular waves and included a simple model of viscous drag. The bistable mechanism was provided by a magnetic dipole model quantified by a dimensionless parameter applicable to any bistable system. The performance of the device was is assessed by the theoretical power generated. Over each model, the previously observed benefit of bistability was not consistently obtained. Simulations of regular waves demonstrated an increase in generated power for suboptimal conditions for some frequencies, while a reduction in generated power was observed in optimal conditions. The performance increase showed strong correlation to the phase relationship between the motion and exciting forces as a result of bistability.


Sign in / Sign up

Export Citation Format

Share Document