Conceptual Sacrificial Anode Cathodic Protection Design for offshore wind monopiles

2021 ◽  
Vol 235 ◽  
pp. 109339
Author(s):  
Caglar Erdogan ◽  
Geoffrey Swain
2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Anna Maria Bell ◽  
Marcus von der Au ◽  
Julia Regnery ◽  
Matthias Schmid ◽  
Björn Meermann ◽  
...  

Abstract Background Cathodic protection by sacrificial anodes composed of aluminum-zinc-indium alloys is often applied to protect offshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus offshore wind farms in Germany over the last decade, increasing levels of aluminum, indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological effects of galvanic anodes are scarce. To investigate possible ecotoxicological effects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fischeri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological effects, the uptake of these elements by C. volutator was investigated. Results The investigated anode material caused no acute toxicity to the tested bacteria and only weak but significant effects on algal growth. In case of the amphipods, the single elements Al and Zn showed significant effects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions Overall, the findings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web.


2021 ◽  
Author(s):  
Thierry Dequin ◽  
Clark Weldon ◽  
Matthew Hense

Abstract Flexible risers are regularly used to produce oil and gas in subsea production systems and by nature interconnect the subsea production system to the floating or fixed host facilities. Unbonded flexible pipes are made of a combination of metallic and non-metallic layers, each layer being individually terminated at each extremity by complex end fittings. Mostly submerged in seawater, the metallic parts require careful material selection and cathodic protection (CP) to survive the expected service life. Design engineers must determine whether the flexible pipe risers should be electrically connected to the host in order to receive cathodic protection current or be electrically isolated. If the host structure is equipped with a sacrificial anode system, then electrical continuity between the riser and the host structure is generally preferred. The exception is often when the riser and host structure are operated by separate organizations, in which case electrical isolation may be preferred simply to provide delineation of ownership between the two CP systems. The paper discusses these interface issues between hull and subsea where the hull is equipped with an impressed current cathodic protection (ICCP) system, and provides guidance for addressing them during flexible pipe CP design, operation, and monitoring. Specifically, CP design philosophies for flexible risers will be addressed with respect to manufacturing, installation and interface with the host structure’s Impressed Current Cathodic Protection (ICCP) system. The discussion will emphasize the importance of early coordination between the host structure ICCP system designers and the subsea SACP system designers, and will include recommendations for CP system computer modeling, CP system design operation and CP system monitoring. One of the challenges is to understand what to consider for the exposed surfaces in the flexible pipes and its multiple layers, and also the evaluation of the linear resistance of each riser segment. The linear resistance of the riser is a major determinant with respect to potential attenuation, which in turn largely determines the extent of current drain between the subsea sacrificial anode system and the hull ICCP system. To model the flexible riser CP system behavior for self-protection, linear resistance may be maximized, however the use of a realistic linear resistance is recommended for evaluation of the interaction between the host structure and subsea system. Realistic flexible linear resistance would also reduce conservatism in the CP design, potentially save time during the offshore campaign by reducing anode quantities, and also providing correct evaluation of drain current and stray currents.


Author(s):  
Cilya Oulmas ◽  
Sonia Mameri ◽  
Dalila BOUGHRARA ◽  
Slimane Bouterfaia ◽  
Joseph Delhalle ◽  
...  

2011 ◽  
Vol 339 ◽  
pp. 617-623
Author(s):  
Zhi Gang Lan ◽  
Bao Rong Hou ◽  
Xiu Tong Wang

The progresses and theoretical methodology of computer modeling of cathodic protection using the boundary element method (BEM) are outlined. To test the effectiveness and accuracy of BEM numerical modeling of cathodic protection for offshore structures, a miniature model offshore jacket with a sacrificial anode was built and put in a test pool full of seawater. Cathodic protection potentials on different positions were measured and compared with the values obtained from computer modeling. The results show good agreement between measured value and numerical simulated value. The factors that led to discrepancy in the two groups of data were discussed.


2005 ◽  
Vol 54 (10) ◽  
pp. 488-493
Author(s):  
Yoshikazu Miyata ◽  
Shukuji Asakura ◽  
Yasuki Matsukawa ◽  
Mamoru Miyashita ◽  
Toshihiko Sudo

Sign in / Sign up

Export Citation Format

Share Document