flexible pipes
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 96)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jianxing Yu ◽  
Haoda Li ◽  
Yang Yu ◽  
Xin Liu ◽  
Weipeng Xu ◽  
...  

Abstract At present, unbonded flexible pipes (UFPs) are widely used in ocean engineering for oil exploitation. In practice, erosion will lead to premature failure of pipelines. There is a lack of researches on the erosion of interlock carcass of UFPs. As the authority in the field of offshore engineering, DET NORSKE VERITAS(DNV) suggested a way to estimate the erosion rate of pipes, however, it does not study the erosion mechanism of UFPs in detail and the relevant parameters are not specified. This paper modifies erosion prediction of UFPs based on a user defined Fortran subroutine. A series of CFD simulations have been conducted, and three widely used erosion models were used for comparative verification. The effect of geometric shape on erosion rate has been carefully studied. and the effect of velocity, particle size, and concentration are also studied to verify the reliability of the improved model.


Author(s):  
Bianca Pedroso Silva Santos ◽  
Jose Jonathan Rubio Arias ◽  
Fábio Elias Jorge ◽  
Raphael Értola Pereira de Deus Santos ◽  
Beatriz da Silva Fernandez ◽  
...  

2021 ◽  
Author(s):  
Mauricio Brandao ◽  
Fabio Pires ◽  
Ingrid Poloponsky ◽  
Fabio Santos ◽  
Diogo Lopes

Abstract Flexible Pipes were widely used in Brazil offshore developments and the challenge on overcoming increasing water depths, high pressures and fluids with high contaminants was always present. In 2017 a new failure mode, called SCC CO2 was disclosed bringing such disruption in the use of this equipment since, at that time, the conditions observed in Brazilian Pre salt were like the "perfect storm" for the failure mode to happen. It had high concentrations of CO2, therefore high permeation in the anulus, high stresses and the possibility to have anulus flooded as result of an outer sheath breach or even due to permeated water. These were the triple conditions needed to have the failure, considering that all metallic material used in the pipe were subjected to this phenomenon. Since the discovery was made, several test campaigns to better understand and replicate the phenomena started. They covered pipe retrieved from field dissection, several small-scale materials testing, and fracture mechanics to create reliable crack propagation calculations. There were 3 mains focus areas; to understand how to deal with the installed fleet, to define the conditions in which a crack would appear and define, using fracture mechanics, how long a crack would take to break the wire. In other words, it was intended to define what is the remaining service life. As a result of this investigation some initial beliefs like that all materials were subjected to the phenomena and that a solution was far away were somehow reduced and reshaped. There was also the initiative to embark on technology for detection of the anulus condition, mainly to define if it is flooded or not. Some ROV inspection means were added to the endfitting and some sensors were added to the interconnected pipe sections that allow conditioning monitoring or inspection from the floating unit, not using a ROV. This paper will cover the improvements done since the disclosure of the phenomena in 2017, reviewing what is known about it so far, what is still to be discovered and how the results achieved to date can contribute for a more reliable and longer service life for the flexible pipes to be applied in a rich CO2 environment.


2021 ◽  
Author(s):  
Robert da Silva Bressan ◽  
Danilo Artigas

Abstract Subsea flexible pipelines removal is subject to order restrictions, mostly caused by crossings. It is proposed to create a computational algorithm to design an optimal order of vessel intervention over a field. A real field was studied, and, from it, the mathematical base model was created upon graph theory, with great correlation with the minimum feedback arc set problem. Vessel movements were discretized and reduced to removal, reposition, and cut, leading to a state search. A-star algorithm was implemented to guide the search for the solution. Then, the complete algorithm was built, tested in a minimal environment, and finally applied to the real instance. To improve performance, a beam search filtering was envisioned, using seven ranking functions. Constructed model is suspected to be NP-hard, by correlation to minimum feedback arc set problem, leading to a large space search. Instances containing under 100 crossings were solved optimally, without needing any assistance. After implementing the heuristics and beam search, solution time was lowered by about 20 times, demonstrating the effectiveness of the technique. Also, ranking functions for pipe repositioning based on crossing count led to better results than crossing density. For cutting, an approximation based on feedback arc set was used. GreedyFAS was employed and gave satisfactory results. Bigger instances containing around 3000 crossings could not be solved optimally in a reasonable time, even with the heuristics. Improvements in A-star estimation function and bound the solution branches might lead to an optimal solution for these larger instances. Model proposed simplifies the operational order decisions and helps build the scheduling of operations. As it is based on state search, other aspects in logistics, vessel capacities and steps in decommissioning processes may be added, adjusting the neighboring weights and branching, keeping the same core.


Sign in / Sign up

Export Citation Format

Share Document