Flow-induced vibration of a rotating circular cylinder at high reduced velocities and high rotation rates

2021 ◽  
Vol 238 ◽  
pp. 109562
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu ◽  
Feifei Tong
2017 ◽  
Vol 829 ◽  
pp. 486-511 ◽  
Author(s):  
K. W. L. Wong ◽  
J. Zhao ◽  
D. Lo Jacono ◽  
M. C. Thompson ◽  
J. Sheridan

While flow-induced vibration of bluff bodies has been extensively studied over the last half-century, only limited attention has been given to flow-induced vibration of elastically mounted rotating cylinders. Since recent low-Reynolds-number numerical work suggests that rotation can enhance or suppress the natural oscillatory response, the former could find applications in energy harvesting and the latter in vibration control. The present experimental investigation characterises the dynamic response and wake structure of a rotating circular cylinder undergoing vortex-induced vibration at a low mass ratio ($m^{\ast }=5.78$) over the reduced velocity range leading to strong oscillations. The experiments were conducted in a free-surface water channel with the cylinder vertically mounted and attached to a motor that provided constant rotation. Springs and an air-bearing system allow the cylinder to undertake low-damped transverse oscillations. Under cylinder rotation, the normalised frequency response was found to be comparable to that of a freely vibrating non-rotating cylinder. At reduced velocities consistent with the upper branch of a non-rotating transversely oscillating cylinder, the maximum oscillation amplitude increased with non-dimensional rotation rate up to $\unicode[STIX]{x1D6FC}\approx 2$. Beyond this, there was a sharp decrease in amplitude. Notably, this critical value corresponds approximately to the rotation rate at which vortex shedding ceases for a non-oscillating rotating cylinder. Remarkably, at $\unicode[STIX]{x1D6FC}=2$ there was approximately an 80 % increase in the peak amplitude response compared to that of a non-rotating cylinder. The observed amplitude response measured over the Reynolds-number range of ($1100\lesssim Re\lesssim 6300$) is significantly different from numerical predictions and other experimental results recorded at significantly lower Reynolds numbers.


2019 ◽  
Vol 191 ◽  
pp. 106505 ◽  
Author(s):  
Qunfeng Zou ◽  
Lin Ding ◽  
Haibo Wang ◽  
Junlei Wang ◽  
Li Zhang

2010 ◽  
Vol 650 ◽  
pp. 513-536 ◽  
Author(s):  
JAN O. PRALITS ◽  
LUCA BRANDT ◽  
FLAVIO GIANNETTI

The two-dimensional flow around a rotating circular cylinder is studied at Re = 100. The instability mechanisms for the first and second shedding modes are analysed. The region in the flow with a role of ‘wavemaker’ in the excitation of the global instability is identified by considering the structural sensitivity of the unstable mode. This approach is compared with the analysis of the perturbation kinetic energy production, a classic approach in linear stability analysis. Multiple steady-state solutions are found at high rotation rates, explaining the quenching of the second shedding mode. Turning points in phase space are associated with the movement of the flow stagnation point. In addition, a method to examine which structural variation of the base flow has the largest impact on the instability features is proposed. This has relevant implications for the passive control of instabilities. Finally, numerical simulations of the flow are performed to verify that the structural sensitivity analysis is able to provide correct indications on where to position passive control devices, e.g. small obstacles, in order to suppress the shedding modes.


2013 ◽  
Vol 730 ◽  
pp. 5-18 ◽  
Author(s):  
Jan O. Pralits ◽  
Flavio Giannetti ◽  
Luca Brandt

AbstractThe two-dimensional stationary flow past a rotating cylinder is investigated for both two- and three-dimensional perturbations. The instability mechanisms are analysed using linear stability analysis and the complete neutral curve is presented. It is shown that the first bifurcation in the case of the rotating cylinder occurs for stationary three-dimensional perturbations, confirming recent experiments. Interestingly, the critical Reynolds number at high rotation rates is lower than that for the stationary circular cylinder. The spatial characteristics of the disturbance and a qualitative comparison with the results obtained for linear flows suggest that the stationary unstable three-dimensional mode could be of hyperbolic nature.


1989 ◽  
Vol 9 (34) ◽  
pp. 273-276
Author(s):  
Takeyoshi Kimura ◽  
Michihisa Tsutahara ◽  
Zhong-yi Wang ◽  
Hiroshi Ishii

2021 ◽  
Author(s):  
Ehsanul Azim ◽  
Md. Jahid Hasan Sagor ◽  
Abul Borkot Md Rafiqul Hasan ◽  
Sumon Saha

Sign in / Sign up

Export Citation Format

Share Document