Void fraction estimation using a simple combined wave gauge system under breaking waves

2021 ◽  
Vol 241 ◽  
pp. 110059
Author(s):  
Byoungjoon Na ◽  
Sangyoung Son
Keyword(s):  
2005 ◽  
Vol 32 (14-15) ◽  
pp. 1829-1840 ◽  
Author(s):  
Ashabul Hoque ◽  
Shin-ichi Aoki

Author(s):  
C.E Blenkinsopp ◽  
J.R Chaplin

This paper describes detailed measurements and analysis of the time-varying distribution of void fractions in three different breaking waves under laboratory conditions. The measurements were made with highly sensitive optical fibre phase detection probes and document the rapid spatial and temporal evolutions of both the bubble plume generated beneath the free surface and the splashes above. Integral properties of the measured void fraction fields reveal a remarkable degree of similarity between characteristics of the two-phase flow in different breaker types as they evolve with time. Depending on the breaker type, the energy expended in entraining air and generating splash accounts for a minimum of between 6.5 and 14% of the total energy dissipated during wave breaking.


2021 ◽  
Author(s):  
Helen Czerski ◽  
Ian M. Brooks ◽  
Steve Gunn ◽  
Robin Pascal ◽  
Adrian Matei ◽  
...  

Abstract. The bubbles generated by breaking waves are of considerable scientific interest due to their influence on air-sea gas transfer, aerosol production, and upper ocean optics and acoustics. However, a detailed understanding of the processes creating deeper bubble plumes (extending 2–10 metres below the ocean surface) and their significance for air-sea gas exchange is still lacking. Here, we present bubble measurements from the HiWinGS expedition in the North Atlantic in 2013, collected during several storms with wind speeds of 10–27 m s−1. A suite of instruments was used to measure bubbles from a self-orienting free-floating spar buoy: a specialised bubble camera, acoustical resonators, and an upward-pointing sonar. The focus in this paper is on bubble void fractions and plume structure. The results are consistent with the presence of a heterogeneous shallow bubble layer occupying the top 1–2 m of the ocean which is regularly replenished by breaking waves, and deeper plumes which are only formed from the shallow layer at the convergence zones of Langmuir circulation. These advection events are not directly connected to surface breaking. The void fraction distributions at 2 m depth show a sharp cut-off at a void fraction of 10−4.5 even in the highest winds, implying the existence of mechanisms limiting the void fractions close to the surface. Below wind speeds of 16 m s−1 or RHw = 2 × 106, the probability distribution of void fraction at 2 m depth is very similar in all conditions, but increases significantly above either threshold. Void fractions are significantly different during periods of rising and falling winds, but there is no distinction with wave age. There is a complex near-surface flow structure due to Langmuir circulation, Stokes drift, and wind-induced current shear which influences the spatial distribution of bubbles within the top few metres. We do not see evidence for slow bubble dissolution as bubbles are carried downwards, implying that collapse is the more likely termination process. We conclude that the shallow and deeper bubble layers need to be studied simultaneously to link them to the 3D flow patterns in the top few metres of the ocean. Many open questions remain about the extent to which deep bubble plumes contribute to air-sea gas transfer. A companion paper (Czerski, 2021) addresses the observed bubble size distributions and the processes responsible for them.


2020 ◽  
Vol 03 (01n02) ◽  
pp. 2050001
Author(s):  
Lian Tang ◽  
Yun-Ta Wu ◽  
Onyx. W. H. Wai ◽  
Pengzhi Lin

The entrained air and turbulence characteristics under a breaking solitary wave on a 1:20 sloping beach are investigated through laboratory measurement. Free surface elevation is obtained from wave gauge measurements. Wave breaking process is captured in detail by a high-speed camera. The bubble image velocimetry (BIV) is used to measure the velocity and the fiber optic reflectometer (FOR) is used to capture instantaneous void fraction in the aerated region. The mean void fraction and velocities in the aerated region are obtained by ensemble averaging over 22 repetitions. Results show that the maximum mean void fraction is 0.6 in the collapsing cavity region and is 0.35 in the splash up region. The time series of the mean void fraction has good synchronization with the instantaneous images taken by high-speed camera. The maximum horizontal velocity occurs in the splash up region and reaches 1.17C shortly after the plunging jet hits the water surface, with C being the phase speed of the primary wave. The turbulence intensities over the entire aerated region are presented and discussed. The measured data can be used for the calibration and verification of the numerical model for aerated flows simulation under breaking waves in the surf zone.


Sign in / Sign up

Export Citation Format

Share Document