gas transfer
Recently Published Documents


TOTAL DOCUMENTS

1003
(FIVE YEARS 151)

H-INDEX

56
(FIVE YEARS 5)

2021 ◽  
Vol 118 (51) ◽  
pp. e2105074118
Author(s):  
Peng Liu ◽  
Jingjun Liu ◽  
Aoshuang Ji ◽  
Christopher T. Reinhard ◽  
Noah J. Planavsky ◽  
...  

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ′17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air–sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air–sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ′17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


Author(s):  
Laura Gonzalez-Blanco ◽  
Enrique Romero ◽  
Paul Marschall ◽  
Séverine Levasseur

AbstractDuring recent decades, argillaceous sedimentary formations have been studied as potential host formations for the geological disposal of long-living and heat-emitting radioactive waste—Boom Clay in Belgium and Opalinus Clay and Brown Dogger in Switzerland. A significant issue in the long-term performance of these potential host rocks concerns the generation and transport of gases. The pressure resulting from the generation of gas in an almost impermeable geological medium in the near field of a repository will increase. Under high gas pressures, the mechanical and hydraulic properties of the host rock are expected to change significantly. Preferential gas pathways may develop which exploit material heterogeneity, anisotropy (bedding planes), rock discontinuities, or interfaces between the different components of the repository, and may eventually lead to the release of the produced gases. Gas flow through these clayey rocks is investigated on the basis of laboratory work. Priority has been given to studying the volume change response of these initially water-saturated materials through relatively fast and controlled volume-rate gas injections. The effect of the gas injection rate, the confining pressure and the bedding orientation on the gas transport properties have been studied with particular attention paid to the coupling with strain behaviour. The results have shown features common to the three formations concerning the gas transfer process through preferential pathways, despite their initially differential properties.


2021 ◽  
Author(s):  
Palas Kumar Farsoiya ◽  
Stéphane Popinet ◽  
Luc Deike
Keyword(s):  

2021 ◽  
Vol 12 (4) ◽  
pp. 1169-1189
Author(s):  
Pascal Perolo ◽  
Bieito Fernández Castro ◽  
Nicolas Escoffier ◽  
Thibault Lambert ◽  
Damien Bouffard ◽  
...  

Abstract. The gas transfer velocity (k) is a major source of uncertainty when assessing the magnitude of lake gas exchange with the atmosphere. For the diversity of existing empirical and process-based k models, the transfer velocity increases with the level of turbulence near the air–water interface. However, predictions for k can vary by a factor of 2 among different models. Near-surface turbulence results from the action of wind shear, surface waves, and buoyancy-driven convection. Wind shear has long been identified as a key driver, but recent lake studies have shifted the focus towards the role of convection, particularly in small lakes. In large lakes, wind fetch can, however, be long enough to generate surface waves and contribute to enhance gas transfer, as widely recognised in oceanographic studies. Here, field values for gas transfer velocity were computed in a large hard-water lake, Lake Geneva, from CO2 fluxes measured with an automated (forced diffusion) flux chamber and CO2 partial pressure measured with high-frequency sensors. k estimates were compared to a set of reference limnological and oceanic k models. Our analysis reveals that accounting for surface waves generated during windy events significantly improves the accuracy of k estimates in this large lake. The improved k model is then used to compute k over a 1-year time period. Results show that episodic extreme events with surface waves (6 % occurrence, significant wave height > 0.4 m) can generate more than 20 % of annual cumulative k and more than 25 % of annual net CO2 fluxes in Lake Geneva. We conclude that for lakes whose fetch can exceed 15 km, k models need to integrate the effect of surface waves.


2021 ◽  
Author(s):  
Helen Czerski ◽  
Ian M. Brooks ◽  
Steve Gunn ◽  
Robin Pascal ◽  
Adrian Matei ◽  
...  

Abstract. The bubbles generated by breaking waves are of considerable scientific interest due to their influence on air-sea gas transfer, aerosol production, and upper ocean optics and acoustics. However, a detailed understanding of the processes creating deeper bubble plumes (extending 2–10 metres below the ocean surface) and their significance for air-sea gas exchange is still lacking. Here, we present bubble measurements from the HiWinGS expedition in the North Atlantic in 2013, collected during several storms with wind speeds of 10–27 m s−1. A suite of instruments was used to measure bubbles from a self-orienting free-floating spar buoy: a specialised bubble camera, acoustical resonators, and an upward-pointing sonar. The focus in this paper is on bubble void fractions and plume structure. The results are consistent with the presence of a heterogeneous shallow bubble layer occupying the top 1–2 m of the ocean which is regularly replenished by breaking waves, and deeper plumes which are only formed from the shallow layer at the convergence zones of Langmuir circulation. These advection events are not directly connected to surface breaking. The void fraction distributions at 2 m depth show a sharp cut-off at a void fraction of 10−4.5 even in the highest winds, implying the existence of mechanisms limiting the void fractions close to the surface. Below wind speeds of 16 m s−1 or RHw = 2 × 106, the probability distribution of void fraction at 2 m depth is very similar in all conditions, but increases significantly above either threshold. Void fractions are significantly different during periods of rising and falling winds, but there is no distinction with wave age. There is a complex near-surface flow structure due to Langmuir circulation, Stokes drift, and wind-induced current shear which influences the spatial distribution of bubbles within the top few metres. We do not see evidence for slow bubble dissolution as bubbles are carried downwards, implying that collapse is the more likely termination process. We conclude that the shallow and deeper bubble layers need to be studied simultaneously to link them to the 3D flow patterns in the top few metres of the ocean. Many open questions remain about the extent to which deep bubble plumes contribute to air-sea gas transfer. A companion paper (Czerski, 2021) addresses the observed bubble size distributions and the processes responsible for them.


Sign in / Sign up

Export Citation Format

Share Document