bubble plumes
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Helen Czerski ◽  
Ian M. Brooks ◽  
Steve Gunn ◽  
Robin Pascal ◽  
Adrian Matei ◽  
...  

Abstract. The bubbles generated by breaking waves are of considerable scientific interest due to their influence on air-sea gas transfer, aerosol production, and upper ocean optics and acoustics. However, a detailed understanding of the processes creating deeper bubble plumes (extending 2–10 metres below the ocean surface) and their significance for air-sea gas exchange is still lacking. Here, we present bubble measurements from the HiWinGS expedition in the North Atlantic in 2013, collected during several storms with wind speeds of 10–27 m s−1. A suite of instruments was used to measure bubbles from a self-orienting free-floating spar buoy: a specialised bubble camera, acoustical resonators, and an upward-pointing sonar. The focus in this paper is on bubble void fractions and plume structure. The results are consistent with the presence of a heterogeneous shallow bubble layer occupying the top 1–2 m of the ocean which is regularly replenished by breaking waves, and deeper plumes which are only formed from the shallow layer at the convergence zones of Langmuir circulation. These advection events are not directly connected to surface breaking. The void fraction distributions at 2 m depth show a sharp cut-off at a void fraction of 10−4.5 even in the highest winds, implying the existence of mechanisms limiting the void fractions close to the surface. Below wind speeds of 16 m s−1 or RHw = 2 × 106, the probability distribution of void fraction at 2 m depth is very similar in all conditions, but increases significantly above either threshold. Void fractions are significantly different during periods of rising and falling winds, but there is no distinction with wave age. There is a complex near-surface flow structure due to Langmuir circulation, Stokes drift, and wind-induced current shear which influences the spatial distribution of bubbles within the top few metres. We do not see evidence for slow bubble dissolution as bubbles are carried downwards, implying that collapse is the more likely termination process. We conclude that the shallow and deeper bubble layers need to be studied simultaneously to link them to the 3D flow patterns in the top few metres of the ocean. Many open questions remain about the extent to which deep bubble plumes contribute to air-sea gas transfer. A companion paper (Czerski, 2021) addresses the observed bubble size distributions and the processes responsible for them.


2021 ◽  
Author(s):  
Helen Czerski ◽  
Ian M. Brooks ◽  
Steve Gunn ◽  
Robin Pascal ◽  
Adrian Matei ◽  
...  

Abstract. Bubbles formed by breaking waves in the open ocean influence many surface processes but are poorly understood. We report here on detailed bubble size distributions measured during the High Wind Speed Gas Exchange Study (HiWinGS) in the North Atlantic, during four separate storms with hourly averaged wind speeds from 10–27 m s−1. The measurements focus on the deeper plumes formed by advection downwards (at 2 m depth and below), rather than the initial surface distributions. Our results suggest that bubbles reaching a depth of 2 m have already evolved to form a heterogeneous but statistically stable population in the top 1–2 metres of the ocean. These shallow bubble populations are carried downwards by coherent near-surface circulations; bubble evolution at greater depths is consistent with control by local gas saturation, surfactant coatings and pressure. We find that at 2 m the maximum bubble radius observed has a very weak wind speed dependence and is too small to be explained by simple buoyancy arguments. For void fractions greater than 10−6, bubble size distributions at 2 m can be fitted by a two-slope power law (with slopes of −0.3 for bubbles of radius < 80 μm and −4.4 for larger sizes). If normalised by void fraction, these distributions collapse to a very narrow range, implying that the bubble population is relatively stable and the void fraction is determined by bubbles spreading out in space rather than changing their size over time. In regions with these relatively high void fractions we see no evidence for slow bubble dissolution. When void fractions are below 10−6, the peak volume of the bubble size distribution is more variable, and can change systematically across a plume at lower wind speeds, tracking the void fraction. Relatively large bubbles (80 μm in radius) are observed to persist for several hours in some cases, following periods of very high wind. Our results suggest that local gas supersaturation around the bubble plume may have a strong influence on bubble lifetime, but significantly, the deep plumes themselves cannot be responsible for this supersaturation. We propose that the supersaturation is predominately controlled by the dissolution of bubbles in the top metre of the ocean, and that this bulk water is then drawn downwards, surrounding the deep bubble plume and influencing its lifetime. In this scenario, oxygen uptake is associated with deep bubble plumes, but is not driven directly by them. We suggest that as bubbles move to depths greater than 2 m, sudden collapse may be more significant as a bubble destruction mechanism than slow dissolution, especially in regions of high void fraction. Finally, we present a proposal for the processes and timescales which form and control these deeper bubble plumes.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2467
Author(s):  
David Birt ◽  
Danielle Wain ◽  
Emily Slavin ◽  
Jun Zang ◽  
Robert Luckwell ◽  
...  

During summer, reservoir stratification can negatively impact source water quality. Mixing via bubble plumes (i.e., destratification) aims to minimise this. Within Blagdon Lake, a UK drinking water reservoir, a bubble plume system was found to be insufficient for maintaining homogeneity during a 2017 heatwave based on two in situ temperature chains. Air temperature will increase under future climate change which will affect stratification; this raises questions over the future applicability of these plumes. To evaluate bubble-plume performance now and in the future, AEM3D was used to simulate reservoir mixing. Calibration and validation were done on in situ measurements. The model performed well with a root mean squared error of 0.53 °C. Twelve future meteorological scenarios from the UK Climate Projection 2018 were taken and down-scaled to sub-daily values to simulate lake response to future summer periods. The down-scaling methods, based on diurnal patterns, showed mixed results. Future model runs covered five-year intervals from 2030 to 2080. Mixing events, mean water temperatures, and Schmidt stability were evaluated. Eight scenarios showed a significant increase in water temperature, with two of these scenarios showing significant decrease in mixing events. None showed a significant increase in energy requirements. Results suggest that future climate scenarios may not alter the stratification regime; however, the warmer water may favour growth conditions for certain species of cyanobacteria and accelerate sedimentary oxygen consumption. There is some evidence of the lake changing from polymictic to a more monomictic nature. The results demonstrate bubble plumes are unlikely to maintain water column homogeneity under future climates. Modelling artificial mixing systems under future climates is a powerful tool to inform system design and reservoir management including requirements to prevent future source water quality degradation.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 262
Author(s):  
Hassan Abdulmouti

Gas–liquid two-phase flow is widely used in many engineering fields, and bubble dynamics is of vital importance in optimizing the engineering design and operating parameters of various adsorptive bubble systems. The characteristics of gas–liquid two-phase (e.g., bubble size, shape, velocity, and trajectory) remain of interest because they give insight into the dynamics of the system. Bubble plumes are a transport phenomenon caused by the buoyancy of bubbles and are capable of generating large-scale convection. The surface flow generated by bubble plumes has been proposed to collect surface-floating substances (in particular, oil layers formed during large oil spills) to protect marine systems, rivers, and lakes. Furthermore, the surface flows generated by bubble plumes are important in various types of reactors, engineering processes, and industrial processes involving a free surface. The bubble parameters play an important role in generating the surface flow and eventually improving the flow performance. This paper studies the effects of temperature on bubble parameters and bubble motion to better understand the relationship between the various bubble parameters that control bubble motion and how they impact the formation of surface flow, with the ultimate goal of improving the efficiency of the generation of surface flow (i.e., rapidly generate a strong, high, and wide surface flow over the bubble-generation system), and to control the parameters of the surface flow, such as thickness, width, and velocity. Such flow depends on the gas flow rate, bubble size (mean bubble diameter), void fraction, bubble velocity, the distance between bubble generator and free surface (i.e., water height), and water temperature. The experiments were carried out to measure bubble parameters in a water column using the image visualization technique to determine their inter-relationships and improve the characteristics of surface flow. The data were obtained by processing visualized images of bubble flow structure for the different sections of the bubble regions, and the results confirm that temperature, bubble size, and gas flow rate significantly affect the flow structure and bubble parameters.


2021 ◽  
Author(s):  
Kun Zhang ◽  
Haibin Song ◽  
Hongbin Wang ◽  
Yi Gong ◽  
Wenhao Fan ◽  
...  

&lt;p&gt;Cold seep is a widespread geological process mainly caused by hydrocarbon fluid migration. Methane bubble plumes released from cold seeps are often observed at the seafloor. These methane bubbles might be released into the atmosphere and have a huge effect on climate changes. It is of great significance for understanding the fate of these methane bubble plumes.&lt;/p&gt;&lt;p&gt;Many kinds of methods have been used to observe the methane bubble plumes, e.g., acoustical, geochemical, and optical methods. Video imaging is a kind of optical methods widely used in methane bubble plume studies. Compared to other methods, video imaging is a non-intrusive, high-resolution, and quick-collected method. Many studies have estimated bubbles' size, rise velocities, behavior, and the fate of bubbles by analyzing video images manually. However, manual analysis is time-consuming, one dimension, and has not been able to determine temporospatial changes in a two-dimension profile perspective.&lt;/p&gt;&lt;p&gt;In this study, we applied the manual analysis method and the particle image velocimetry (PIV) method to analyze in-situ video image sequences of Haima cold seep bubble plumes, a newly discovered, active cold seep in the Qiongdongnan Basin of the northern South China Sea during 2019. Quantitative and temporospatial change information about the plume flow filed is obtained. The results show that the sizes of bubbles in the plume range from 2.556 ~ 4.624 mm, with a rising velocity of ~ 0.26 m/s. The flux for an individual bubble stream is ~ 94.8 ml/min. The flow velocity field of the bubble plume is consistent with the manual analysis, and it reveals that the bubble plume's flow field is a multiscale turbulent flow field. The bubble plumes are usually V-shaped. Through carrying the adjacent water column, the bubble plumes swell and change rapidly. The direction and velocity of the bubble plume flow change with time, and its streamlines are sinuous. The max velocity of the bubble plume flow field changes at a 6.6 s period cycle.&lt;/p&gt;&lt;p&gt;Although there is some indetermination, our results show that the PIV method is feasible for calculating the bubble plume flow field and that it has some unique advantages, e.g., it is fast, non-invasive, it provides two-dimension temporospatial change images, and it has a high resolution. The images of the bubble plume flow field provide a new perspective to observe the cold seep systems. We hope that this method can be improved and widely applied in cold seep plume studies in the future.&lt;/p&gt;


2021 ◽  
Vol 9 (2) ◽  
pp. 126
Author(s):  
Yaomei Wang ◽  
Worakanok Thanyamanta ◽  
Craig Bulger ◽  
Neil Bose ◽  
Jimin Hwang

To overcome the environmental impacts of releasing oil into the ocean for testing acoustic methods in field experiments using autonomous underwater vehicles (AUVs), environmentally friendly gas bubble plumes with low rise velocities are proposed in this research to be used as proxies for oil. An experiment was conducted to test the performance of a centrifugal-type microbubble generator in generating microbubble plumes and their practicability to be used in field experiments. Sizes of bubbles were measured with a Laser In-Situ Scattering and Transmissometry sensor. Residence time of bubble plumes was estimated by using a Ping360 sonar. Results from the experiment showed that a larger number of small bubbles were found in deeper water as larger bubbles rose quickly to the surface without staying in the water column. The residence time of the generated bubble plumes at the depth of 0.5 m was estimated to be over 5 min. The microbubble generator is planned to be applied in future field experiments, as it is effective in producing relatively long-endurance plumes that can be used as potential proxies for oil plumes in field trials of AUVs for delineating oil spills.


2021 ◽  
Vol 229 ◽  
pp. 116098
Author(s):  
Vishnu Teja Mantripragada ◽  
Srikrishna Sahu ◽  
Sabita Sarkar
Keyword(s):  

2021 ◽  
Vol 229 ◽  
pp. 116059
Author(s):  
Qingqing Pan ◽  
Stein Tore Johansen ◽  
Jan Erik Olsen ◽  
Mark Reed ◽  
Lars Roar Sætran

Sign in / Sign up

Export Citation Format

Share Document