entrained air
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 48)

H-INDEX

23
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3092
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Spillway design is key to the effective and safe operation of dams. Typically, the flow is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades, advances in computational fluid dynamics (CFD) made available several numerical tools to aid hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method. Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant computational resources. An assessment is performed in a spillway offset aerator, comparing the two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy, the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency and stability of this model.


2021 ◽  
Vol 39 (6) ◽  
pp. 443-454
Author(s):  
Ping-Jung Li ◽  
Chao-Shi Chen ◽  
Cheng-Yu Weng ◽  
Hsin-Hsiu Ho

This article discusses the overpressure of a gas explosion and the performance of applying water mist for explosion suppression. According to the experimental results, the larger the opening area, the more difficult it is for pressure to accumulate, resulting in lower overpressure of a gas explosion. When the opening was opened under a high air speed environment, the amount of entrained air was greater. Consequently, the occurrence time of the explosion was shorter than at a low air speed. Despite the water mist nozzle being installed outside the enclosure, a propane gas explosion still occurred regardless of the amount of water mist used, failing to suppress the explosion. However, the water mist nozzle installed inside the enclosure supplied an adequate amount of water mist that could wash a part of the propane, resulting in the fuel concentration dropping below the lower explosion limit, hindering the occurrence of an explosion.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4762
Author(s):  
Marcos Díaz González ◽  
Pablo Plaza Caballero ◽  
David Blanco Fernández ◽  
Manuel Miguel Jordán Vidal ◽  
Isabel Fuencisla Sáez del Bosque ◽  
...  

This research study analysed the effect of adding fine—fMRA (0.25% and 50%)—and coarse—cMRA (0%, 25% and 50%)—mixed recycled aggregate both individually and simultaneously in the development of sustainable recycled concretes that require a lower consumption of natural resources. For this purpose, we first conducted a physical and mechanical characterisation of the new recycled raw materials and then analysed the effect of its addition on fresh and hardened new concretes. The results highlight that the addition of fMRA and/or cMRA does not cause a loss of workability in the new concrete but does increase the amount of entrained air. Regarding compressive strength, we observed that fMRA and/or cMRA cause a maximum increase of +12.4% compared with conventional concrete. Tensile strength increases with the addition of fMRA (between 8.7% and 5.5%) and decreases with the use of either cMRA or fMRA + cMRA (between 4.6% and 7%). The addition of fMRA mitigates the adverse effect that using cMRA has on tensile strength. Regarding watertightness, all designed concretes have a structure that is impermeable to water. Lastly, the results show the feasibility of using these concretes to design elements with a characteristic strength of 25 MPa and that the optimal percentage of fMRA replacement is 25%.


Author(s):  
Ryan Stebbins ◽  
Philip King ◽  
Guha Manogharan

Abstract 3D sand-printing (3DSP) has become more popular in foundry applications due to its ability to create complex gating geometries. Since filling related defects, like entrained air and bi-films, are most commonly caused by high melt velocity and turbulence, recent 3DSP research has focused on designing gating systems to reduce melt velocity and turbulence. However, there have been no reported efforts on advancements in the design of runner extensions as a method to improve casting quality, despite its tremendous impact on the initial metal flow characteristics. The ability to fabricate 3DSP molds allow for unique runner extension designs that aid in improving casting quality. This paper is the first study known to the authors that investigates novel 3D runner extension designs to determine the most effective design for reducing sand casting defects. Based on literature review and design principles developed for 3D sprue geometries, six different runner extensions were studied using Computational Fluid Dynamics (CFD) modeling for foundry pouring conditions. The designs were evaluated on their ability to reduce defects like entrained air and bubbles, as well as to prevent backflow and reflected waves. An unweighted ranking matrix and comparison matrix against the control (straight runner extension) has been established based on air entrainment, tracer, voids, and extension volume. The results showed that the by-pass principal and surge control systems are effective at reducing reflective waves and controlling the ingate flow. The novel 3D duckbill trap extension proposed in this study had the best overall performance based on a 16% reduction in entrained air and a 71% reduction in void particles in the casting volume compared to the control extension design. These results provide a framework to further optimize runner extensions, utilize the advantages of 3D Sand-Printing technology to improve mechanical strength and reduce filling defects in sand-casting.


2021 ◽  
Vol 28 (2) ◽  
pp. 285-293
Author(s):  
Juan M. Restrepo ◽  
Alex Ayet ◽  
Luigi Cavaleri

Abstract. We make a physical–mathematical analysis of the implications that the presence of a large number of tiny bubbles may have, when present, on the thin upper layer of the sea. In our oceanographic example, the bubbles are due to intense rain. It was found that the bubbles increase momentum dissipation in the near surface and affect the surface tension force. For short waves, the implications of increased vorticity are momentum exchanges between wave and mean flow and modifications to the wave dispersion relation. For the direct effect we have analyzed, the implications are estimated to be non-significant when compared to other processes of the ocean. However, we hint at the possibility that our analysis may be useful in other areas of research or practical application.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2439
Author(s):  
Teemu Ojala ◽  
Yanjuan Chen ◽  
Jouni Punkki ◽  
Fahim Al-Neshawy

This paper presents the characteristics of air void systems in hardened concrete with the method of digital image analysis (DIA) coupled with Schwartz-Saltykov (SS) conversion. The results indicate that the DIA method coupled with SS conversion estimates the air content with more accuracy than it would without SS conversion; the correlation between air content obtained from the DIA method, and that from the thin section (TS) method is as good as the correlation observed between the pressure saturation (PS) method and the TS method. It was also found that the DIA method shows a better correlation with the TS method when the spacing factor without SS conversion is considered, while both methods show poor correlations when the corresponding specific surface is considered. In addition, it indicates that the peak of three-dimensional size distribution (3-DSD) of air voids after SS conversion falls in smaller voids, and 3-DSD of air voids shifts to a narrow size range, in comparison with the 2-DSD without SS conversion; the shape of the 3-DSD air voids remains constant irrespective of the class widths. Increasing the number of classes can minimise the standard deviation in the estimation, however, it also results in a leap in voids volume density, which will influence the estimation of air content.


Sign in / Sign up

Export Citation Format

Share Document