scholarly journals The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects

Omega ◽  
2017 ◽  
Vol 71 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Aparicio ◽  
Jose M. Cordero ◽  
Jesus T. Pastor
Author(s):  
Juan Aparicio

Purpose The purpose of this paper is to provide an outline of the major contributions in the literature on the determination of the least distance in data envelopment analysis (DEA). The focus herein is primarily on methodological developments. Specifically, attention is mainly paid to modeling aspects, computational features, the satisfaction of properties and duality. Finally, some promising avenues of future research on this topic are stated. Design/methodology/approach DEA is a methodology based on mathematical programming for the assessment of relative efficiency of a set of decision-making units (DMUs) that use several inputs to produce several outputs. DEA is classified in the literature as a non-parametric method because it does not assume a particular functional form for the underlying production function and presents, in this sense, some outstanding properties: the efficiency of firms may be evaluated independently on the market prices of the inputs used and outputs produced; it may be easily used with multiple inputs and outputs; a single score of efficiency for each assessed organization is obtained; this technique ranks organizations based on relative efficiency; and finally, it yields benchmarking information. DEA models provide both benchmarking information and efficiency scores for each of the evaluated units when it is applied to a dataset of observations and variables (inputs and outputs). Without a doubt, this benchmarking information gives DEA a distinct advantage over other efficiency methodologies, such as stochastic frontier analysis (SFA). Technical inefficiency is typically measured in DEA as the distance between the observed unit and a “benchmarking” target on the estimated piece-wise linear efficient frontier. The choice of this target is critical for assessing the potential performance of each DMU in the sample, as well as for providing information on how to increase its performance. However, traditional DEA models yield targets that are determined by the “furthest” efficient projection to the evaluated DMU. The projected point on the efficient frontier obtained as such may not be a representative projection for the judged unit, and consequently, some authors in the literature have suggested determining closest targets instead. The general argument behind this idea is that closer targets suggest directions of enhancement for the inputs and outputs of the inefficient units that may lead them to the efficiency with less effort. Indeed, authors like Aparicio et al. (2007) have shown, in an application on airlines, that it is possible to find substantial differences between the targets provided by applying the criterion used by the traditional DEA models, and those obtained when the criterion of closeness is utilized for determining projection points on the efficient frontier. The determination of closest targets is connected to the calculation of the least distance from the evaluated unit to the efficient frontier of the reference technology. In fact, the former is usually computed through solving mathematical programming models associated with minimizing some type of distance (e.g. Euclidean). In this particular respect, the main contribution in the literature is the paper by Briec (1998) on Hölder distance functions, where formally technical inefficiency to the “weakly” efficient frontier is defined through mathematical distances. Findings All the interesting features of the determination of closest targets from a benchmarking point of view have generated, in recent times, the increasing interest of researchers in the calculation of the least distance to evaluate technical inefficiency (Aparicio et al., 2014a). So, in this paper, we present a general classification of published contributions, mainly from a methodological perspective, and additionally, we indicate avenues for further research on this topic. The approaches that we cite in this paper differ in the way that the idea of similarity is made operative. Similarity is, in this sense, implemented as the closeness between the values of the inputs and/or outputs of the assessed units and those of the obtained projections on the frontier of the reference production possibility set. Similarity may be measured through multiple distances and efficiency measures. In turn, the aim is to globally minimize DEA model slacks to determine the closest efficient targets. However, as we will show later in the text, minimizing a mathematical distance in DEA is not an easy task, as it is equivalent to minimizing the distance to the complement of a polyhedral set, which is not a convex set. This complexity will justify the existence of different alternatives for solving these types of models. Originality/value As we are aware, this is the first survey in this topic.


Measurement ◽  
2019 ◽  
Vol 137 ◽  
pp. 49-57 ◽  
Author(s):  
Majid Sedighi Hassan Kiyadeh ◽  
Saber Saati ◽  
Sohrab Kordrostami

Author(s):  
Tomoe Entani ◽  

Organizations are interested in exploiting the data from the other organizations for better analyses. Therefore, the data related policies of organizations should be sensitive to the data privacy issue, which has been widely discussed recently. The present study is focused on inter-group data usage for a relative evaluation. This research is based on the data envelopment analysis (DEA), which is used to measure the efficiency of a decision making unit (DMU) relatively employed within a group. In DEA, establishing an efficient frontier consisting of efficient DMUs is essential. We can obtain the efficiency values of a DMU by projecting it to the efficient frontier, and including in the efficiency interval via the interval DEA. When the original data of multiple groups are not open to each other, the alternative is to exchange the information corresponding to the efficient frontiers to estimate the efficiency intervals of a DMU in such a manner that the alternative is in the other groups. Therefore, in this paper, we propose a method to replace the efficient frontier with a weight vector set, from which it is not possible to reconstruct the original data. Considering the weight vector sets of multiple groups, a DMU has three types of efficiency intervals: in its own group, in each of the other groups, and in the integrated group. They provide rich insights on the DMU from a broad perspective, and this encourages inter-group data usage. In this process, we focus on two types of information reduction: one is from the efficient frontier to the weight vector set, and the other is from a union of the groups to the integrated group.


2019 ◽  
Vol 17 (9) ◽  
Author(s):  
Nor Nazihah Chuweni

The research examines the technical efficiency (TE) and economies of scale for the Malaysian Real Estate Investment Trust (M-REITs) from 2010 to 2014, using a non-parametric approach of Data Envelopment Analysis (DEA). The nonparametric approach of Variable Return to Scale DEA (VRS-DEA model) was used to estimate the efficiency scores for M-REITs. The negative inefficient value for the technical inefficiencies is identified as a result of both poor input utilisation (managerial inefficiency) and failure of M-REITs to operate at optimum scale (scale inefficiency). The mean technical efficiency (TE) measures ranged from as low as 41.70% in 2011 to as high as 84.30% in 2014. Despite having the Sharia requirement, Islamic REITs in Malaysia provide an effective investment opportunity evidenced by the higher scores for all efficiency measures, as compared to conventional REITs for the period under study. Pure technical inefficiency has a greater deviation in the efficient frontier than scale inefficiency, suggesting that M-REITs inputs are not fully minimised to produce more outputs. With regard to scale inefficiency, M-REITs are operating at economies of scale, indicating the importance of expansion or growth to improve on efficiency performance. This will then allow M-REIT managers to formulate better strategic investment decisions.


Author(s):  
Chandra Sekhar Patro

In the present competitive business environment, it is essential for the management of any organisation to take wise decisions regarding supplier evaluation. It plays a vital role in establishing an effective supply chain for any organisation. Most of the experts agreed that there is no one best way to evaluate the suppliers and different organizations use different approaches for evaluating supplier efficiency. The overall objective of any approach is to reduce purchase risk and maximize overall value to the purchaser. In this paper Data Envelopment Analysis (DEA) technique is developed to evaluate the supplier efficiency for an organisation. DEA is a multifactor productivity technique to measure the relative efficiency of the decision making units. The super efficiency method of DEA provides a way, which indicates the extent to which the efficient suppliers exceed the efficient frontier formed by other efficient suppliers. A case study is undertaken to evaluate the supplier performance and efficiency using DEA approach.


Sign in / Sign up

Export Citation Format

Share Document