Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry

2016 ◽  
Vol 364 ◽  
pp. 101-109 ◽  
Author(s):  
Jin Lu ◽  
Rong Mo ◽  
Huibin Sun ◽  
Zhiyong Chang ◽  
Xiaxia Zhao
2011 ◽  
Vol 83 ◽  
pp. 179-184 ◽  
Author(s):  
Lei Huang ◽  
Anand Krishna Asundi

Phase retrieval from fringe patterns is a primary procedure in fringe projection profilometry. Only accurate phase values result in three dimensions with certain accuracy. Phase shifting method plus temporal phase unwrapping approach provides not only the unwrapped absolute phase, but also the modulation map, background map, root mean square errors of least squares fitting, and phase relationship between two neighboring pixels, which can be used for the identification of phase invalidity. A practical phase retrieval frame work is presented to accurately calculate the absolute phase within reliable regions only, with which those unavailable phase points can be automatically identified with thresholds selection and criterion testing and then removed or interpolated according to applications. Experimental results show practical feasibility of the proposed framework.


2017 ◽  
Vol 56 (09) ◽  
pp. 1 ◽  
Author(s):  
Hao Yu ◽  
Liangzhao Lin ◽  
Xiaoying Li ◽  
Xiaoxu Lu ◽  
Liyun Zhong ◽  
...  

2018 ◽  
Vol 8 (12) ◽  
pp. 2673 ◽  
Author(s):  
Xu Yang ◽  
Chunnian Zeng ◽  
Jie Luo ◽  
Yu Lei ◽  
Bo Tao ◽  
...  

Fringe projection technologies have been widely used for three-dimensional (3D) shape measurement. One of the critical issues is absolute phase recovery, especially for measuring multiple isolated objects. This paper proposes a method for absolute phase retrieval using only one coded pattern. A total of four patterns including one coded pattern and three phase-shift patterns are projected, captured, and processed. The wrapped phase, as well as average intensity and intensity modulation, are calculated from three phase-shift patterns. A code word encrypted into the coded pattern can be calculated using the average intensity and intensity modulation. Based on geometric constraints of fringe projection system, the minimum fringe order map can be created, upon which the fringe order can be calculated from the code word. Compared with the conventional method, the measurement depth range is significantly improved. Finally, the wrapped phase can be unwrapped for absolute phase map. Since only four patterns are required, the proposed method is suitable for real-time measurement. Simulations and experiments have been conducted, and their results have verified the proposed method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parsa Omidi ◽  
Mohamadreza Najiminaini ◽  
Mamadou Diop ◽  
Jeffrey J. L. Carson

AbstractSpatial resolution in three-dimensional fringe projection profilometry is determined in large part by the number and spacing of fringes projected onto an object. Due to the intensity-based nature of fringe projection profilometry, fringe patterns must be generated in succession, which is time-consuming. As a result, the surface features of highly dynamic objects are difficult to measure. Here, we introduce multispectral fringe projection profilometry, a novel method that utilizes multispectral illumination to project a multispectral fringe pattern onto an object combined with a multispectral camera to detect the deformation of the fringe patterns due to the object. The multispectral camera enables the detection of 8 unique monochrome fringe patterns representing 4 distinct directions in a single snapshot. Furthermore, for each direction, the camera detects two π-phase shifted fringe patterns. Each pair of fringe patterns can be differenced to generate a differential fringe pattern that corrects for illumination offsets and mitigates the effects of glare from highly reflective surfaces. The new multispectral method solves many practical problems related to conventional fringe projection profilometry and doubles the effective spatial resolution. The method is suitable for high-quality fast 3D profilometry at video frame rates.


Sign in / Sign up

Export Citation Format

Share Document