frequency phase
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 144)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 74 ◽  
pp. 103492
Author(s):  
Bhavya Vasudeva ◽  
Runfeng Tian ◽  
Dee H. Wu ◽  
Shirley A. James ◽  
Hazem H. Refai ◽  
...  

2022 ◽  
Vol 75 ◽  
pp. 301-319
Author(s):  
Kaiyuan Wu ◽  
Yucai Zeng ◽  
Mingjin Zhang ◽  
Xiaobin Hong ◽  
Peimin Xie

Author(s):  
Cheonjoong Kim ◽  
Kyungah Lim ◽  
Seonah Kim

In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less


Author(s):  
A. A. Al Qarni ◽  
A. A. Alshaery ◽  
H. O. Bakodah

In this work, we present a collective variable (CV) approach to establish dispersive solitary wave solutions for the Kaup–Newell Equation (KNE). The full CV theory has been utilized to enunciate the soliton molecules through its ground-laying parameters including the power of each pulse, phase and center-of-mass. Additionally, the dynamics of an ultra short pulse has been analyzed by using CV. This work may be utilized for various dynamics of solitons as well as the influence the amplitude, temporal position, frequency, phase and chirp on the solitons’ nonlinear parameters. Moreover, the numerical simulations have been designed by means of appropriate parameter values to explain more on the obtained results.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012046
Author(s):  
R R Khairullina ◽  
S A Demin ◽  
V A Yunusov ◽  
O Y Panischev

Abstract This work presents the results of parameterization of magnetoencephalogram signals from healthy subjects and a patient with photosensitive epilepsy. Diagnostic criteria were established during the extraction of resonant and high-frequency (chaotic) components of the initial time signals. It is shown that an increase in the intensity of the chaotic components of the studied signals in the high-frequency region leads to a violation of cross-correlation relationships and a decrease in the level of manifestation of frequency-phase synchronization. The discovered signs of photosensitive epilepsy will contribute to the development of new methods for the diagnosis and medical control of this disease based on Flicker-Noise Spectroscopy.


2021 ◽  
Vol 922 (1) ◽  
pp. L16
Author(s):  
Wu Jiang ◽  
Zhiqiang Shen ◽  
Ivan Martí-Vidal ◽  
Xuezheng Wang ◽  
Dongrong Jiang ◽  
...  

Abstract We report millimeter-VLBI results of low-luminosity active galactic nuclei (M84 and M87) up to 88 GHz with source-frequency phase-referencing observations. We detected the weak VLBI core and obtained the first image of M84 at 88 GHz. The derived brightness temperature of the M84 core was about 7.2 × 109 K, which could serve as a lower limit because the core down to 30 Schwarzschild radii was still unresolved in our 88 GHz observations. We successfully determined the core shifts of M87 at 22–44 GHz and 44–88 GHz through the source-frequency phase-referencing technique. The jet apex of M87 could be deduced at ∼46 μas upstream of the 43 GHz core from core-shift measurements. The estimated magnetic field strength of the 88 GHz core of M87 is 4.8 ± 2.4 G, which is at the same magnitude of 1–30 G near the event horizon probed by the Event Horizon Telescope.


Sign in / Sign up

Export Citation Format

Share Document