Fingerprinting petroporphyrin structures with vibrational spectroscopy. Part 7. Calculations using density functional theory of the molecular structures and structure-sensitive vibrational modes of type II nickel(II) cycloalkanoporphyrins

2007 ◽  
Vol 38 (2) ◽  
pp. 250-266 ◽  
Author(s):  
Arkadiusz Czader ◽  
Roman S. Czernuszewicz
2018 ◽  
Vol 5 (12) ◽  
pp. 181363 ◽  
Author(s):  
Lisha Zhong ◽  
Stewart F. Parker

In this work, we have used a combination of vibrational spectroscopy (infrared, Raman and inelastic neutron scattering) and periodic density functional theory to investigate the structure of methanesulfonic acid (MSA) in the liquid and solid states. The spectra clearly show that the hydrogen bonding is much stronger in the solid than the liquid state. The structure of MSA is not known; however, mineral acids typically adopt a chain structure in condensed phases. A periodic density functional theory (CASTEP) calculation based on the linear chain structure found in the closely related molecule trifluoromethanesulfonic acid gave good agreement between the observed and calculated spectra, particularly with regard to the methyl and sulfonate groups. The model accounts for the large widths of the asymmetric S-O stretch modes; however, the external mode region is not well described. Together, these observations suggest that the basic model of four molecules in the primitive unit cell, linked by hydrogen bonding into chains, is correct, but that MSA crystallizes in a different space group than that of trifluoromethanesulfonic acid.


Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.


2017 ◽  
Vol 8 (2) ◽  
pp. 1631-1641 ◽  
Author(s):  
Chun-Teh Chen ◽  
Francisco J. Martin-Martinez ◽  
Gang Seob Jung ◽  
Markus J. Buehler

A set of computational methods that contains a brute-force algorithmic generation of chemical isomers, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations is reported and applied to investigate nearly 3000 probable molecular structures of polydopamine (PDA) and eumelanin.


2020 ◽  
Vol 22 (35) ◽  
pp. 19672-19679 ◽  
Author(s):  
A. D. Squires ◽  
Adam J. Zaczek ◽  
R. A. Lewis ◽  
Timothy M. Korter

New spectral features and anomalous shifting of vibrational modes of beta quinacridone are revealed, unusual thermal contraction the likely origin.


Sign in / Sign up

Export Citation Format

Share Document