Substantial maturity influence on carbon and hydrogen isotopic composition of n-alkanes in sedimentary rocks

2020 ◽  
pp. 104171
Author(s):  
Galina Vinnichenko ◽  
Amber J.M. Jarrett ◽  
Lennart M. van Maldegem ◽  
Jochen J. Brocks
2016 ◽  
Vol 13 (19) ◽  
pp. 5527-5539 ◽  
Author(s):  
Sandra Mariam Heinzelmann ◽  
Nicole Jane Bale ◽  
Laura Villanueva ◽  
Danielle Sinke-Schoen ◽  
Catharina Johanna Maria Philippart ◽  
...  

Abstract. Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium-to-hydrogen (D / H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor ε between fatty acids and water (εlipid/water) ranged between −172 and −237 ‰, the algal-derived polyunsaturated fatty acid nC20:5 generally being the most D-depleted (−177 to −235 ‰) and nC18:0 the least D-depleted fatty acid (−172 to −210 ‰). The in general highly D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The εlipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 polyunsaturated fatty acids, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative εlipid/water values) can potentially be explained by an increased contribution of heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a promising tool to assess the community metabolism of coastal plankton potentially in combination with the isotopic analysis of more specific biomarker lipids.


2013 ◽  
Vol 106 ◽  
pp. 111-133 ◽  
Author(s):  
L. Bonal ◽  
C.M.O’D. Alexander ◽  
G.R. Huss ◽  
K. Nagashima ◽  
E. Quirico ◽  
...  

2020 ◽  
pp. 203-226
Author(s):  
A. M. Sazonov ◽  
K. V. Lobanov ◽  
E. A. Zvyagina ◽  
S. I. Leontiev ◽  
S. A. Silyanov ◽  
...  

Abstract The Olympiada deposit, containing >1,560 metric tons (t; 50 Moz) of gold at an average grade of 4 to 4.6 g/t Au, occurs in central Siberia, Russia. Over 30 years, the deposit produced more than 580 t of gold, including 200 t from oxidized ore grading 11.1 g/t. The deposit forms a 2-km-long, steeply dipping system, which is traced downdip for 1.7 km. It occurs in the Neoproterozoic orogen of the Yenisei Ridge at the western margin of the Siberian craton. This and other gold deposits in the district are controlled by the large, long-lived Tatarka-Ishimbino tectonic zone, marking a suture between terranes chiefly consisting of deformed Meso- to Neoproterozoic carbonate-clastic sedimentary rocks. The combination of lithologic and structural factors was critical for localization of gold mineralization associated with calcic and siliceous alteration accompanied by early arsenic and late antimony sulfides. As a result, very fine (10 μm) and high fineness (910–997) gold associates with diverse sulfides, especially arsenopyrite, and commonly contains mercury, similar to some characteristics of Carlin-type deposits. Geochronologic studies suggest that mineralization was formed during several stages between 817 and 660 Ma. The isotopic composition of Os and He, along with presence of anomalous Ni, Co, and Pt, points to a mantle mafic source, whereas isotopic composition of Pb and S suggest a contaminated crustal source, i.e., originating from a mix of mantle and crustal fluids.


2005 ◽  
Vol 69 (13) ◽  
pp. 3431-3443 ◽  
Author(s):  
Matthieu Gounelle ◽  
Cécile Engrand ◽  
Olivier Alard ◽  
Philip A. Bland ◽  
Michael E. Zolensky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document