leaf wax
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 86)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 308 (1) ◽  
Author(s):  
Sergio Contreras ◽  
Manlio Landahur ◽  
Karla García ◽  
Claudio Latorre ◽  
Mark Reyers ◽  
...  

AbstractIn the hyperarid Atacama Desert, water availability plays a crucial role in allowing plant survival. Along with scant rainfall, marine advective fog frequently occurs along the coastal escarpment fueling isolated mono-specific patches of Tillandsia vegetation. In this study, we investigate the lipid biomarker composition of the bromeliad Tillandsia landbeckii (CAM plant) to assess structural adaptations at the molecular level as a response to extremely arid conditions. We analyzed long-chain n-alkanes and fatty acids in living specimens (n = 59) collected from the main Tillandsia dune ecosystems across a 350 km coastal transect. We found that the leaf wax composition was dominated by n-alkanes with concentrations (total average 160.8 ± 91.4 µg/g) up to three times higher than fatty acids (66.7 ± 40.7 µg/g), likely as an adaptation to the hyperarid environment. Significant differences were found in leaf wax distribution (Average Chain Length [ACL] and Carbon Preference Index [CPI]) in the northern zone relative to the central and southern zones. We found strong negative correlations between fatty acid CPI and n-alkane ACL with precipitation and surface evaporation pointing at fine-scale adaptations to low moisture availability along the coastal transect. Moreover, our data indicate that the predominance of n-alkanes is reflecting the function of the wax in preventing water loss from the leaves. The hyperarid conditions and good preservation potential of both n-alkanes and fatty acids make them ideal tracers to study late Holocene climate change in the Atacama Desert.


2021 ◽  
Author(s):  
Mingqiu Hou ◽  
Guangsheng Zhuang ◽  
et al.

Table S1: Leaf wax isotopic records in the Gulf of Mexico; Table S2: Reconstructions of mean annual precipitation based on leaf wax carbon isotopic records; Table S3: Sea surface temperature reconstructions; Table S4: Leaf wax isotopic records of modern trees.


2021 ◽  
Author(s):  
Mingqiu Hou ◽  
Guangsheng Zhuang ◽  
et al.

Table S1: Leaf wax isotopic records in the Gulf of Mexico; Table S2: Reconstructions of mean annual precipitation based on leaf wax carbon isotopic records; Table S3: Sea surface temperature reconstructions; Table S4: Leaf wax isotopic records of modern trees.


2021 ◽  
Vol 18 (19) ◽  
pp. 5363-5380
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotope composition of leaf-wax-derived biomarkers, e.g., long-chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimate. However, a direct reconstruction of the isotope composition of source water based on δ2Hn-alkane alone is challenging due to the enrichment of heavy isotopes during evaporation. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this limitation and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of Eucalyptus globulus, Vicia faba, and Brassica oleracea, which grew under controlled conditions. We addressed the questions of (i) whether δ2Hn-alkane and δ18Osugar values allow reconstructions of leaf water isotope composition, (ii) how accurately the reconstructed leaf water isotope composition enables relative humidity (RH) reconstruction, and (iii) whether the coupling of δ2Hn-alkane and δ18Osugar enables a robust source water calculation. For all investigated species, the n-alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. Regarding hemicellulose-derived monosaccharides, arabinose and xylose were most abundant, and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf water and δ18Oleaf water, respectively (r2=0.45 and 0.85, respectively; p<0.001, n=24). Mean fractionation factors between biomarkers and leaf water were found to be −156 ‰ (ranging from −133 ‰ to −192 ‰) for εn-alkane/leaf water and +27.3 ‰ (ranging from +23.0 ‰ to 32.3 ‰) for εsugar/leaf water, respectively. Modeled RHair values from a Craig–Gordon model using measured Tair, δ2Hleaf water and δ18Oleaf water as input correlate highly significantly with modeled RHair values (R2=0.84, p<0.001, RMSE = 6 %). When coupling δ2Hn-alkane and δ18Osugar values, the correlation of modeled RHair values with measured RHair values is weaker but still highly significant, with R2=0.54 (p<0.001, RMSE = 10 %). Finally, the reconstructed source water isotope composition (δ2Hs and δ18Os) as calculated from our coupled approach matches the source water in the climate chamber experiment (δ2Htank water and δ18Otank water). This highlights the great potential of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach for paleoclimate and relative humidity reconstructions.


2021 ◽  
Vol 169 ◽  
pp. 113670
Author(s):  
Pernell Tomasi ◽  
Matthew T. Herritt ◽  
Matthew A. Jenks ◽  
Alison L. Thompson

2021 ◽  
Vol 269 ◽  
pp. 107130
Author(s):  
W.C. Daniels ◽  
J.M. Russell ◽  
C. Morrill ◽  
W.M. Longo ◽  
A.E. Giblin ◽  
...  

Radiocarbon ◽  
2021 ◽  
pp. 1-16
Author(s):  
Bernhard Aichner ◽  
Merle Gierga ◽  
Alexander Stolz ◽  
Monika Mętrak ◽  
Mateusz Wilk ◽  
...  

ABSTRACT To elucidate the dynamics of terrestrial leaf waxes in a high-altitude lake system, we performed compound-specific radiocarbon analysis (CSRA) of long-chain n-alkanes in two sediment core sections from Lake Karakul (Pamirs, Tajikistan) and in surface soil samples from the catchment area. We aimed to answer the question whether the n-alkanes are delivered into the lake sediment with substantial delay due to storage in soils, which may cause a potential bias when used as paleoenvironmental proxies. In the surface soils, the CSRA results reveal an age range of n-alkanes from modern to 2278 ± 155 cal BP. In the two sediment core samples, three of the four n-alkane ages fell on the lower ends of the 1σ-uncertainty ranges of modeled ages of the sediments (based on AMS 14C-TOC and OSL dating results). We conclude that sedimentary leaf waxes represent compounds with intermediate turnover time in soils, for example originating from alluvial plains close to the shores. Overall, the results provide evidence that sedimentary leaf wax compounds in this cold and arid setting are potentially older than the conventional age model indicates, but these findings need to be interpreted in context of the generally large uncertainty ranges of such age models.


Sign in / Sign up

Export Citation Format

Share Document