Effect of trunk flexion on cervical muscle EMG to rear impacts

2005 ◽  
Vol 23 (5) ◽  
pp. 1105-1111 ◽  
Author(s):  
Shrawan Kumar ◽  
Robert Ferrari ◽  
Yogesh Narayan
2005 ◽  
Vol 10 (1) ◽  
pp. 103-110
Author(s):  
S Kumar ◽  
R Ferrari ◽  
Y Narayan ◽  
E R Vieira

2005 ◽  
Vol 167 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Shrawan Kumar ◽  
Robert Ferrari ◽  
Yogesh Narayan ◽  
Edgar R. Vieira

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0006
Author(s):  
Gretchen D. Oliver ◽  
Kenzie B. Friesen ◽  
Regan E. Shaw ◽  
David Shannon ◽  
Jeffrey Dugas ◽  
...  

Background: Softball pitchers have an eminent propensity for injury due to the high repetition and ballistic nature of the pitch. As such, trunk pathomechanics during pitching have been associated with upper extremity pain. The single leg squat (SLS) is a simple diagnostic tool used to examine LPHC and trunk stability. Research shows a lack of LPHC stability is often associated with altered pitching mechanics consequently increasing pain and injury susceptibility. Hypothesis/Purpose: The purpose of this study was to examine the relationship between trunk compensatory kinematics during the SLS and kinematics during foot contact of the windmill pitch. The authors hypothesized there would be a relationship between SLS compensations and pitch kinematics previously associated with injury. In using a simple clinical assessment such as the SLS, athletes, coaches, parents, and clinicians can identify potential risk factors that may predispose the athlete to injurious movement patterns. Methods: Fifty-five youth and high school softball pitchers (12.6±2.2 years, 160.0±11.0 cm, 60.8±15.5 kg) were recruited to participate. Kinematic data were collected at 100Hz using an electromagnetic tracking device. Participants were asked to complete a SLS on their stride leg (contralateral to their throwing arm), then throw 3 fastballs at maximal effort. Values of trunk flexion, trunk lateral flexion, and trunk rotation at peak depth of the SLS were used as the dependent variables in three separate backward elimination regression analyses. Independent variables examined at foot contact of the pitch included: trunk flexion, trunk lateral flexion, trunk rotation, center of mass, stride length, and stride knee valgus. Results: The SLS trunk rotation regression, F(1,56) = 4.980, p = .030, revealed trunk flexion significantly predicted SLS trunk rotation (SE = .068, t = 2.232, p = .030) and explained approximately 7% of variance (Adj. R2 = .066). The SLS trunk flexion regression, F(1,56) = 5.755, p = .020, revealed stride knee valgus significantly predicted SLS trunk flexion (SE = .256, t = 2.399, p = .020) and explained approximately 8% of variance (Adj. R2 = .078). Conclusion/Significance: Additional trunk rotation and trunk flexion at peak depth of the SLS indicate increased knee valgus and trunk flexion at foot contact of the pitch, both of which suggest poor LPHC stability, may increase the potential for injury. Athletes, coaches and clinicians should acknowledge the risk of poor LPHC in softball pitching and implement exercises to improve LPHC stability in effort to decrease pitching pathomechanics and associated pain.


Author(s):  
Tessy Luger ◽  
Mona Bär ◽  
Robert Seibt ◽  
Monika A. Rieger ◽  
Benjamin Steinhilber

Objective To investigate the effect of using a passive back-support exoskeleton (Laevo V2.56) on muscle activity, posture, heart rate, performance, usability, and wearer comfort during a course of three industrial tasks (COU; exoskeleton worn, turned-on), stair climbing test (SCT; exoskeleton worn, turned-off), timed-up-and-go test (TUG; exoskeleton worn, turned-off) compared to no exoskeleton. Background Back-support exoskeletons have the potential to reduce work-related physical demands. Methods Thirty-six men participated. Activity of erector spinae (ES), biceps femoris (BF), rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM), trapezius descendens (TD) was recorded by electromyography; posture by trunk, hip, knee flexion angles; heart rate by electrocardiography; performance by time-to-task accomplishment (s) and perceived task difficulty (100-mm visual analogue scale; VAS); usability by the System Usability Scale (SUS) and all items belonging to domains skepticism and user-friendliness of the Technology Usage Inventory; wearer comfort by the 100-mm VAS. Results During parts of COU, using the exoskeleton decreased ES and BF activity and trunk flexion, and increased RA, GM, and TD activity, knee and hip flexion. Wearing the exoskeleton increased time-to-task accomplishment of SCT, TUG, and COU and perceived difficulty of SCT and TUG. Average SUS was 75.4, skepticism 11.5/28.0, user-friendliness 18.0/21.0, wearer comfort 31.1 mm. Conclusion Using the exoskeleton modified muscle activity and posture depending on the task applied, slightly impaired performance, and was evaluated mildly uncomfortable. Application These outcomes require investigating the effects of this passive back-supporting exoskeleton in longitudinal studies with longer operating times, providing better insights for guiding their application in real work settings.


2014 ◽  
Vol 33 ◽  
pp. 395-403 ◽  
Author(s):  
David Kluger ◽  
Matthew J. Major ◽  
Stefania Fatone ◽  
Steven A. Gard
Keyword(s):  

2021 ◽  
Vol 83 ◽  
pp. 250-255
Author(s):  
Stephen J. Preece ◽  
Wael Alghamdi
Keyword(s):  

1998 ◽  
Vol 10 (2) ◽  
pp. 93-96
Author(s):  
Hitoshi MARUYAMA ◽  
Mayumi ABE
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Luciana Bahia Gontijo ◽  
Polianna Delfino Pereira ◽  
Camila Danielle Cunha Neves ◽  
Ana Paula Santos ◽  
Dionis de Castro Dutra Machado ◽  
...  

Introduction. The proprioceptive neuromuscular facilitation (PNF) is a physiotherapeutic concept based on muscle and joint proprioceptive stimulation. Among its principles, the irradiation is the reaction of the distinct regional muscle contractions to the position of the application of the motions.Objective. To investigate the presence of irradiated dorsiflexion and plantar flexion and the existing strength generated by them during application of PNF trunk motions.Methods. The study was conducted with 30 sedentary and female volunteers, the PNF motions of trunk flexion, and extension with the foot (right and left) positioned in a developed equipment coupled to the load cell, which measured the strength irradiated in Newton.Results. Most of the volunteers irradiated dorsal flexion in the performance of the flexion and plantar flexion during the extension motion, both presenting an average force of 8.942 N and 10.193 N, respectively.Conclusion. The distal irradiation in lower limbs became evident, reinforcing the therapeutic actions to the PNF indirect muscular activation.


Sign in / Sign up

Export Citation Format

Share Document