rear impacts
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
M. A Corrales ◽  
D. S Cronin

The increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in geometry between young and aged persons and between males and females. In this study, a new methodology, coupling a CAD and a repositioning software, was developed to reposture an existing Finite element neck while retaining a high level of mesh quality. A 5th percentile female aged neck model (F0575YO) and a 50th percentile male aged neck model (M5075YO) were developed from existing young (F0526YO and M5026YO) neck models (Global Human Body Models Consortium v5.1). The aged neck models included an increased cervical lordosis and an increase in the facet joint angles, as reported in the literature. The young and the aged models were simulated in frontal (2, 8, and 15 g) and rear (3, 7, and 10 g) impacts. The responses were compared using head and relative facet joint kinematics, and nominal intervertebral disc shear strain. In general, the aged models predicted higher tissue deformations, although the head kinematics were similar for all models. In the frontal impact, only the M5075YO model predicted hard tissue failure, attributed to the combined effect of the more anteriorly located head with age, when compared to the M5026YO, and greater neck length relative to the female models. In the rear impacts, the F0575YO model predicted higher relative facet joint shear compared to the F0526YO, and higher relative facet joint rotation and nominal intervertebral disc strain compared to the M5075YO. When comparing the male models, the relative facet joint kinematics predicted by the M5026YO and M5075YO were similar. The contrast in response between the male and female models in the rear impacts was attributed to the higher lordosis and facet angle in females compared to males. Epidemiological data reported that females were more likely to sustain Whiplash Associated Disorders in rear impacts compared to males, and that injury risk increases with age, in agreement with the findings in the present study. This study demonstrated that, although the increased lordosis and facet angle did not affect the head kinematics, changes at the tissue level were considerable (e.g., 26% higher relative facet shear in the female neck compared to the male, for rear impact) and relatable to the epidemiology. Future work will investigate tissue damage and failure through the incorporation of aged material properties and muscle activation.


2021 ◽  
pp. 1-6
Author(s):  
Chantal S. Parenteau ◽  
David C. Viano ◽  
Roger A. Burnett
Keyword(s):  

Author(s):  
Anna Carlsson ◽  
Johan Davidsson ◽  
Astrid Linder ◽  
Mats Y. Svensson

The objective of this study was to present the design of a prototype rear impact crash test dummy, representing a 50th percentile female, and compare its performance to volunteer response data. The intention was to develop a first crude prototype as a first step toward a future biofidelic 50th percentile female rear impact dummy. The current rear impact crash test dummy, BioRID II, represents a 50th percentile male, which may limit the assessment and development of whiplash protection systems with regard to female occupants. Introduction of this new dummy size will facilitate evaluation of seat and head restraint (HR) responses in both the average sized female and male in rear impacts. A 50th percentile female rear impact prototype dummy, the BioRID P50F, was developed from modified body segments originating from the BioRID II. The mass and rough dimensions of the BioRID P50F is representative of a 50th percentile female. The prototype dummy was evaluated against low severity rear impact sled tests comprising six female volunteers closely resembling a 50th percentile female with regard to stature and mass. The head/neck response of the BioRID P50F prototype resembled the female volunteer response corridors. The stiffness of the thoracic and lumbar spinal joints remained the same as the average sized male BioRID II, and therefore likely stiffer than joints of an average female. Consequently, the peak rearward angular displacement of the head and T1, and the rearward displacement of the T1, were lesser for the BioRID P50F in comparison to the female volunteers. The biofidelity of the BioRID P50F prototype thus has some limitations. Based on a seat response comparison between the BioRID P50F and the BioRID II, it can be concluded that the male BioRID II is an insufficient representation of the average female in the assessment of the dynamic seat response and effectiveness of whiplash protection systems.


2021 ◽  
Author(s):  
Samuel White ◽  
Chantal Parenteau ◽  
Roger Burnett

2021 ◽  
Author(s):  
Jennifer L. Buckman ◽  
Chantal S. Parenteau ◽  
Roger Burnett ◽  
David C. Viano ◽  
Christopher Andrecovich
Keyword(s):  

2021 ◽  
Author(s):  
Declan A. Patton ◽  
Aditya N. Belwadi ◽  
Jalaj Maheshwari ◽  
Kristy B. Arbogast
Keyword(s):  

2021 ◽  
pp. 1-6
Author(s):  
Chantal S. Parenteau ◽  
David C. Viano ◽  
Edmund C. Lau
Keyword(s):  

2021 ◽  
Vol 22 (2) ◽  
pp. 147-152
Author(s):  
Chantal S. Parenteau ◽  
Roger A. Burnett ◽  
David C. Viano ◽  
Edmund Lau

Sign in / Sign up

Export Citation Format

Share Document