Embedding new observations via sparse-coding for non-linear manifold learning

2014 ◽  
Vol 47 (1) ◽  
pp. 480-492 ◽  
Author(s):  
Bogdan Raducanu ◽  
Fadi Dornaika
2013 ◽  
Vol 312 ◽  
pp. 650-654 ◽  
Author(s):  
Yi Lin He ◽  
Guang Bin Wang ◽  
Fu Ze Xu

Characteristic signals in rotating machinery fault diagnosis with the issues of complex and difficult to deal with, while the use of non-linear manifold learning method can effectively extract low-dimensional manifold characteristics embedded in the high-dimensional non-linear data. It greatly maintains the overall geometric structure of the signals and improves the efficiency and reliability of the rotating machinery fault diagnosis. According to the development prospects of manifold learning, this paper describes four classical manifold learning methods and each advantages and disadvantages. It reviews the research status and application of fault diagnosis based on manifold learning, as well as future direction of researches in the field of manifold learning fault diagnosis.


2021 ◽  
pp. 102278
Author(s):  
Di Folco Maxime ◽  
Moceri Pamela ◽  
Clarysse Patrick ◽  
Duchateau Nicolas

Author(s):  
Diana Mateus ◽  
Christian Wachinger ◽  
Selen Atasoy ◽  
Loren Schwarz ◽  
Nassir Navab

Computer aided diagnosis is often confronted with processing and analyzing high dimensional data. One alternative to deal with such data is dimensionality reduction. This chapter focuses on manifold learning methods to create low dimensional data representations adapted to a given application. From pairwise non-linear relations between neighboring data-points, manifold learning algorithms first approximate the low dimensional manifold where data lives with a graph; then, they find a non-linear map to embed this graph into a low dimensional space. Since the explicit pairwise relations and the neighborhood system can be designed according to the application, manifold learning methods are very flexible and allow easy incorporation of domain knowledge. The authors describe different assumptions and design elements that are crucial to building successful low dimensional data representations with manifold learning for a variety of applications. In particular, they discuss examples for visualization, clustering, classification, registration, and human-motion modeling.


Sign in / Sign up

Export Citation Format

Share Document