Weighted kappa loss function for multi-class classification of ordinal data in deep learning

2018 ◽  
Vol 105 ◽  
pp. 144-154 ◽  
Author(s):  
Jordi de la Torre ◽  
Domenec Puig ◽  
Aida Valls
2021 ◽  
Vol Volume 13 ◽  
pp. 4605-4617
Author(s):  
Weiming Mi ◽  
Junjie Li ◽  
Yucheng Guo ◽  
Xinyu Ren ◽  
Zhiyong Liang ◽  
...  

2020 ◽  
Author(s):  
Mostafa Hussien

The problem of selecting the modulation and coding scheme (MCS) that maximizes the system throughput, known as link adaptation, has been investigated extensively, especially for IEEE 802.11 (WiFi) standards. Recently, deep learning has widely been adopted as an efficient solution to this problem. However, in model failure cases, predicting a higher-rate MCS can result in a failed transmission. In this case, retransmission is required, which largely degrades the system throughput. To address this issue, we formulate the adaptive modulation and coding (AMC) problem as a multi-label multi-class classification problem. The proposed formulation allows more control over what the model predicts in failure cases. In this context, we propose a simple, yet powerful, loss function to reduce the number of retransmissions due to higher-rate MCS classification errors. Since wireless channels change significantly due to the surrounding environment, a huge dataset is generated to cover all possible propagation conditions. However, to reduce training complexity, we train the CNN model using part of the dataset. The effect of different subdataset selection criteria on the classification accuracy is studied. It is shown that some criteria for dataset selection consistently behave better than others. To confirm the performance, we applied the proposed model for adapting the IEEE 802.11ax standard in outdoor propagation scenarios. The simulation results show that the proposed loss function reduces up to 50% of retransmissions compared to traditional loss functions. Finally, we propose an optimal subdataset selection criterion.


2021 ◽  
Vol 117 ◽  
pp. 1-11
Author(s):  
Amit Kumar Jaiswal ◽  
Prayag Tiwari ◽  
Sahil Garg ◽  
M. Shamim Hossain

Author(s):  
Prerna Mishra ◽  
Santosh Kumar ◽  
Mithilesh Kumar Chaube

Chart images exhibit significant variabilities that make each image different from others even though they belong to the same class or categories. Classification of charts is a major challenge because each chart class has variations in features, structure, and noises. However, due to the lack of affiliation between the dissimilar features and the structure of the chart, it is a challenging task to model these variations for automatic chart recognition. In this article, we present a novel dissimilarity-based learning model for similar structured but diverse chart classification. Our approach jointly learns the features of both dissimilar and similar regions. The model is trained by an improved loss function, which is fused by a structural variation-aware dissimilarity index and incorporated with regularization parameters, making the model more prone toward dissimilar regions. The dissimilarity index enhances the discriminative power of the learned features not only from dissimilar regions but also from similar regions. Extensive comparative evaluations demonstrate that our approach significantly outperforms other benchmark methods, including both traditional and deep learning models, over publicly available datasets.


2021 ◽  
Author(s):  
Mostafa Hussien

The problem of selecting the modulation and coding scheme (MCS) that maximizes the system throughput, known as link adaptation, has been investigated extensively, especially for IEEE 802.11 (WiFi) standards. Recently, deep learning has widely been adopted as an efficient solution to this problem. However, in failure cases, predicting a higher-rate MCS can result in a failed transmission. In this case, a retransmission is required, which largely degrades the system throughput. To address this issue, we model the adaptive modulation and coding (AMC) problem as a multi-label multi-class classification problem. The proposed modeling allows more control over what the model predicts in failure cases. We also design a simple, yet powerful, loss function to reduce the number of retransmissions due to higher-rate MCS classification errors. Since wireless channels change significantly due to the surrounding environment, a huge dataset has been generated to cover all possible propagation conditions. However, to reduce training complexity, we train the CNN model using part of the dataset. The effect of different subdataset selection criteria on the classification accuracy is studied. The proposed model adapts the IEEE 802.11ax communications standard in outdoor scenarios. The simulation results show the proposed loss function reduces up to 50% of retransmissions compared to traditional loss functions.


Author(s):  
Komal Damodara ◽  

Diabetes mellitus is a form of diabetes with secondary microvascular complication leading to renal dysfunction and retinal loss also termed as diabetic retinopathy. Retinopathy is grave form of retinal disease. It is the leading cause of blindness in the world. Blockage of tiny minute retinal blood vessels due to the high blood sugar level is the reason why retinopathy leads to blindness or loss of vision. This study serves the purpose of deep learning-based diagnosis of Diabetic retinopathy using the fundus imaging of the eye. In this study architectures such as VGG 16 and VGG 19 are deployed in order to classify the images into 5 categories. The performance of the two models were compared. The highest accuracy is 77.67% when using the VGG 16 pre-trained model.


2019 ◽  
Vol 2 ◽  
pp. 1-8
Author(s):  
Yue Wu ◽  
Yevgeniya Filippovska ◽  
Valentina Schmidt ◽  
Martin Kada

<p><strong>Abstract.</strong> The generalization of 3D buildings is a challenging task, which needs to consider geometry information, semantic content and topology relations of 3D buildings. Although many algorithms with detailed and reasonable designs have been developed for the 3D building generalization, there are still cases that could be further studied. As a fast-growing technique, Deep Learning has shown its ability to build complex concepts out of simpler concepts in many fields. Therefore, in this paper, Deep Learning is used to solve the regression (generalization of individual 3D building) and classification problems (classification of roof type) simultaneously. Firstly, the test dataset is generated and labelled with the generalization results as well as the classification of roof types. Buildings with saddleback, half-hip, and hip roof are selected as the experimental objects since their generalization results can be uniformly represented by a common vector which aims to meet the compatible representation of Deep Learning. Then, the pre-trained ResNet50 is used as the baseline network. The optimal model capacity is searched within an extensive ablation study in the framework of the building generalization problem. After that, a multi-task network is built by adding a branch of classification to the above network, which is in parallel with the generalization branch. In the process of training, the imbalance problems of tasks and classes are solved by adjusting their donations to the total loss function. It is found that less error rate is obtained after adding a classification branch. For the final results, two improved metrics are used to evaluate the generalization performance. The accuracy of generalization reached over 95% for horizontal information and 85% for height, while the accuracy of classification reached 100% on the test dataset.</p>


Sign in / Sign up

Export Citation Format

Share Document