Longterm evaluation of land use changes on catchment water balance––a case study from North-East Germany

2003 ◽  
Vol 28 (33-36) ◽  
pp. 1281-1290 ◽  
Author(s):  
Martin Wegehenkel
2018 ◽  
Vol 9 (17) ◽  
pp. 168-181
Author(s):  
narges javidan ◽  
Abdolgreza Bahremand ◽  
rana javidan ◽  
Majid Onagh ◽  
Chooghi Bayram Komaki ◽  
...  

1990 ◽  
Vol 114 (3-4) ◽  
pp. 327-348 ◽  
Author(s):  
F. Bultot ◽  
G.L. Dupriez ◽  
D. Gellens

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Dong Han ◽  
Jiajun Qiao ◽  
Qiankun Zhu

Rural-spatial restructuring involves the spatial mapping of the current rural development process. The transformation of land-use morphologies, directly or indirectly, affects the practice of rural restructuring. Analyzing this process in terms of the dominant morphology and recessive morphology is helpful for better grasping the overall picture of rural-spatial restructuring. Accordingly, this paper took Zhulin Town in Central China as a case study area. We propose a method for studying rural-spatial restructuring based on changes in the dominant and recessive morphologies of land use. This process was realized by analyzing the distribution and functional suitability of ecological-production-living (EPL) spaces based on land-use types, data on land-use changes obtained over a 30-year observation period, and in-depth research. We found that examining rural-spatial restructuring by matching the distribution of EPL spaces with their functional suitability can help to avoid the misjudgment of the restructuring mode caused by the consideration of the distribution and structural changes in quantity, facilitating greater understanding of the process of rural-spatial restructuring. Although the distribution and quantitative structure of Zhulin’s EPL spaces have changed to differing degrees, ecological- and agricultural-production spaces still predominate, and their functional suitability has gradually increased. The spatial distribution and functional suitability of Zhulin are generally well matched, with 62.5% of the matched types being high-quality growth, and the positive effect of Zhulin’s spatial restructuring over the past 30 years has been significant. We found that combining changes in EPL spatial area and quantity as well as changes in functional suitability is helpful in better understanding the impact of the national macro-policy shift regarding rural development. Sustaining the positive spatial restructuring of rural space requires the timely adjustment of local actors in accordance with the needs of macroeconomic and social development, and a good rural-governance model is essential.


2008 ◽  
Vol 99 (3-4) ◽  
pp. 210-227 ◽  
Author(s):  
Filomena Canora ◽  
M. Dolores Fidelibus ◽  
Antonella Sciortino ◽  
Giuseppe Spilotro

2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2014 ◽  
Vol 124 ◽  
pp. 118-128 ◽  
Author(s):  
Jinfeng Du ◽  
Jean-Claude Thill ◽  
Richard B. Peiser ◽  
Changchun Feng

Sign in / Sign up

Export Citation Format

Share Document