Paleomagnetism of a well-dated marine succession in South China: A possible Late Cambrian true polar wander (TPW)

2018 ◽  
Vol 277 ◽  
pp. 38-54 ◽  
Author(s):  
Wen-Jun Jiao ◽  
Yong-Xiang Li ◽  
Zhen-Yu Yang
Geology ◽  
2020 ◽  
Author(s):  
Xianqing Jing ◽  
David A.D. Evans ◽  
Zhenyu Yang ◽  
Yabo Tong ◽  
Yingchao Xu ◽  
...  

Disentangling records of Rodinia fragmentation and true polar wander remains a challenge for understanding late Tonian plate tectonics. The ca. 760 Ma lower member of the Liántuó Formation, South China, yields a primary paleomagnetic remanence that passes both the fold and reversal tests. This new result and recently reported ca. 800 Ma data from elsewhere in South China suggest a new interpretation of its apparent polar wander path, whereby pre–770 Ma poles have inverted absolute polarity relative to traditional interpretations. Based on this inversion, and an interpretation of several oscillations of true polar wander documented by global data during 810–760 Ma, we propose a novel reconstruction for Rodinia and its breakup. Our reconstruction places the South China, India, and Kalahari cratons to the southwest of Laurentia, with connections that might have been established as early as ca. 1000 Ma. Our model also suggests that initial rifting of Rodinia occurred at ca. 800 Ma via fast northward motion of the India craton and South China.


2021 ◽  
Author(s):  
Justin Tonti-Filippini ◽  
Boris Robert ◽  
Élodie Muller ◽  
Michael Wack ◽  
Xixi Zhao ◽  
...  

<p>The paleomagnetic record during the middle Neoproterozoic (~825-780 Ma) displays rapid apparent polar wander variations leading to large discrepancies in paleogeographic reconstructions. Some authors propose that these data may represent true polar wander events, which correspond to independent motion of the mantle and lithosphere with respect to Earth’s rotation axis. An alternative explanation might be a perturbation of the geomagnetic field, such as a deviation from a predominantly dipole field or a hyper-reversing field. To test these hypotheses, we sampled 1200 oriented cores over a stratigraphic height of 100 metres in sedimentary rocks of the 820-810 Ma Laoshanya Formation in South China. We will present preliminary paleomagnetic and rock magnetic analyses together with results of petrologic and geochemical experiments to better understand the origin of the paleomagnetic signal.</p>


2002 ◽  
Vol 107 (B10) ◽  
pp. ETG 16-1-ETG 16-17 ◽  
Author(s):  
R. Sabadini ◽  
A. M. Marotta ◽  
R. De Franco ◽  
L. L. A. Vermeersen

Science ◽  
2000 ◽  
Vol 288 (5475) ◽  
pp. 2283a-2283 ◽  
Author(s):  
R. D. Cottrell

Sign in / Sign up

Export Citation Format

Share Document