Three-phase relative permeability and hysteresis effect during WAG process in mixed wet and low IFT systems

2011 ◽  
Vol 78 (3-4) ◽  
pp. 732-739 ◽  
Author(s):  
Hamidreza Shahverdi ◽  
Mehran Sohrabi ◽  
Mobeen Fatemi ◽  
Mahmoud Jamiolahmady
SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0799-0808 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Large quantities of oil usually remain in oil reservoirs after conventional waterfloods. A significant part of this remaining oil can still be economically recovered by water-alternating-gas (WAG) injection. WAG injection involves drainage and imbibition processes taking place sequentially; therefore, the numerical simulation of the WAG process requires reliable knowledge of three-phase relative permeability (kr) accounting for cyclic-hysteresis effects. In this study, the results of a series of unsteady-state two-phase displacements and WAG coreflood experiments were used to investigate the behavior of three-phase kr and hysteresis effects in the WAG process. The experiments were performed on two different cores with different characteristics and wettability conditions. An in-house coreflood simulator was developed to obtain three-phase relative permeability values directly from unsteady-state WAG experiments by history matching the measured recovery and differential-pressure profiles. The results show that three-phase gas relative permeability is reduced in consecutive gas-injection cycles and consequently the gas mobility and injectivity drop significantly with successive gas injections during the WAG process, under different rock conditions. The trend of hysteresis in the relative permeabilty of gas (krg) partly contradicts the existing hysteresis models available in the literature. The three-phase water relative permeability (krw) of the water-wet (WW) core does not exhibit considerable hysteresis effect during different water injections, whereas the mixed-wet (MW) core shows slight cyclic hysteresis. This may indicate a slight increase of the water injectivity in the subsequent water injections in the WAG process under MW conditions. Insignificant hysteresis is observed in the oil relative permeability (kro) during different gas-injection cycles for both WW and MW rocks. However, a considerable cyclic-hysteresis effect in kro is observed during water-injection cycles of WAG, which is attributed to the reduction of the residual oil saturation (ROS) during successive water injections. The kro of the WW core exhibits much-more cyclic-hysteresis effect than that of the MW core. No models currently exist in reservoir simulators that can capture the observed cyclic-hysteresis effect in oil relative permeability for the WAG process. Investigation of relative permeability data obtained from these displacement tests at different rock conditions revealed that there is a significant discrepancy between two-phase and three-phase relative permeability of all fluids. This highlights that not only the three-phase relative permeability of the intermediate phase (oil), but also the three-phase kr of the wetting phase (water) and nonwetting phase (gas) are functions of two independent saturations.


2021 ◽  
Author(s):  
Latifa Obaid Alnuaimi ◽  
Mehran Sohrabi ◽  
Shokoufeh Aghabozorgi ◽  
Ahmed Alshmakhy

Abstract Simulation of Water-Alternating-Gas (WAG) Experiments require precise estimation of hysteresis phenomenon in three-phase relative permeability. Most of the research available in the literature are focused on experiments performed on sandstone rocks and the study of carbonate rocks has attracted less attention. In this paper, a recently published hysteresis model by Heriot-Watt University (HWU) was used for simulation of WAG experiments conducted on mixed-wet homogenous carbonate rock. In this study, we simulated immiscible WAG experiments, which were performed under reservoir conditions on mixed-wet carbonate reservoir rock extracted from Abu Dhabi field by using real reservoir fluids. Experiments are performed with different injection scenarios and at high IFT conditions. Then, the results of the coreflood experiments were history matched using 3RPSim to generate two-phase and three-phase relative permeability data. Finally, the hysteresis model suggested by Heriot-Watt University was used for the estimation of hysteresis in relative permeability data. The performance of the model was compared with the experimental data from sandstones to evaluate the impact of heterogeneity on hysteresis phenomenon. It was shown that the available correlations for estimation of three-phase oil relative permeability fail to simulate the oil production during WAG experiments, while the modified Stone model suggested by HWU provided a better prediction. Overall, HWU hysteresis model improved the match for trapped gas saturation and pressure drop. The results show that the hysteresis effect is less dominant in the carbonate rock compared to the sandstone rock. The tracer test results show that the carbonate rock is more homogenous compared to sandstone rock. Therefore, the conclusion is that the hysteresis effect is negligible in homogenous systems.


1976 ◽  
Author(s):  
James K. Dietrich ◽  
Paul L. Bondor

2018 ◽  
Vol 54 (2) ◽  
pp. 1109-1126 ◽  
Author(s):  
Wei Jia ◽  
Brian McPherson ◽  
Feng Pan ◽  
Zhenxue Dai ◽  
Nathan Moodie ◽  
...  

Author(s):  
Mehdi Honarpour ◽  
Leonard Koederitz ◽  
A. Herbert Harvey

2015 ◽  
Author(s):  
Amir Kianinejad ◽  
Xiongyu Chen ◽  
David A. DiCarlo

Sign in / Sign up

Export Citation Format

Share Document