Fast diagnosis of reservoir simulation models based on 4D seismic similarity indicators

Author(s):  
Juliana Santos ◽  
Daiane Rossi Rosa ◽  
Denis José Schiozer ◽  
Alessandra Davolio
Author(s):  
Klaus Rollmann ◽  
Aurea Soriano-Vargas ◽  
Marcos Cirne ◽  
Alessandra Davolio ◽  
Denis José Schiozer ◽  
...  

SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 282-292 ◽  
Author(s):  
Jan-Arild Skjervheim ◽  
Geir Evensen ◽  
Sigurd Ivar Aanonsen ◽  
Bent Ole Ruud ◽  
Tor-Arne Johansen

Summary A method based on the ensemble Kalman filter (EnKF) for continuous model updating with respect to the combination of production data and 4D seismic data is presented. When the seismic data are given as a difference between two surveys, a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be applied. Also, special care has to be taken because of the large amount of data assimilated. Still, the method is completely recursive, with little additional cost compared to the traditional EnKF. The model system consists of a commercial reservoir simulator coupled with a rock physics and seismic modeling software. Both static variables (porosity, permeability, and rock physic parameters) and dynamic variables (saturations and pressures) may be updated continuously with time based on the information contained in the assimilated measurements. The method is applied to a synthetic model and a real field case from the North Sea. In both cases, the 4D seismic data are different variations of inverted seismic. For the synthetic case, it is shown that the introduction of seismic data gives a much better estimate of reservoir permeability. For the field case, the introduction of seismic data gives a very different permeability field than using only production data, while retaining the production match. Introduction The Kalman filter was originally developed to update the states of linear systems (Kalman 1960). For a presentation of this method in a probabilistic, linear least-squares setting, see Tarantola (2005). However, this method is not suitable for nonlinear models, and the ensemble Kalman filter (EnKF) method was introduced in 1994 by Geir Evensen for updating nonlinear ocean models (Evensen 1994). The method may also be applied to a combined state and parameter estimation problem (Evensen 2006; Lorentzen 2001; Anderson 1998). Several recent investigations have shown the potential of the EnKF for continuous updating of reservoir simulation models, as an alternative to traditional history matching (Nævdal et al. 2002a, b; Nævdal et al. 2005; Gu and Oliver 2004; Gao and Reynolds 2005; Wen and Chen 2005). The EnKF method is a Monte Carlo type sequential Bayesian inversion, and provides an approximate solution to the combined parameter and state-estimation problem. The result is an ensemble of solutions approximating the posterior probability density function for the model input parameters (e.g., permeability and porosity), state variables (pressures and saturations), and other output data (e.g., well production history) conditioned to measured, dynamic data. Conditioning reservoir simulation models to seismic data is a difficult task (Gosselin et al. 2003). In this paper, we show how the ensemble Kalman filter method can be used to update a combined reservoir simulation/seismic model using the combination of production data and inverted 4D seismic data. There are special challenges involved in the assimilation of the large amount of data available with 4D seismic, and the present work is based on the work presented by Evensen (2006, 2004) and Evensen and van Leeuwen (2000). In the following, the combined state and parameter estimation problem is described in a Bayesian framework, and it is shown how this problem is solved using the EnKF method, with emphasis on the application to 4D seismic data. When the seismic data are given as a difference between two surveys, a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be applied. Special challenges involved when the amount of data is very large are discussed. The validity of the method is examined using a synthetic model, and finally, a real case from the North Sea is presented.


2020 ◽  
Vol 145 ◽  
pp. 104617
Author(s):  
Aurea Soriano-Vargas ◽  
Klaus Rollmann ◽  
Forlan Almeida ◽  
Alessandra Davolio ◽  
Bernd Hamann ◽  
...  

2005 ◽  
Author(s):  
Jan-Arild Skjervheim ◽  
Geir Evensen ◽  
Sigurd Ivar Aanonsen ◽  
Bent Ole Ruud ◽  
Tor-Arne Johansen

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 2055-2066
Author(s):  
Sarath Pavan Ketineni ◽  
Subhash Kalla ◽  
Shauna Oppert ◽  
Travis Billiter

Summary Standard history-matching workflows use qualitative 4D seismic observations to assist in reservoir modeling and simulation. However, such workflows lack a robust framework for quantitatively integrating 4D seismic interpretations. 4D seismic or time-lapse-seismic interpretations provide valuable interwell saturation and pressure information, and quantitatively integrating this interwell data can help to constrain simulation parameters and improve the reliability of production modeling. In this paper, we outline technologies aimed at leveraging the value of 4D for reducing uncertainty in the range of history-matched models and improving the production forecast. The proposed 4D assisted-history-match (4DAHM) workflows use interpretations of 4D seismic anomalies for improving the reservoir-simulation models. Design of experiments is initially used to generate the probabilistic history-match simulations by varying the range of uncertain parameters (Schmidt and Launsby 1989; Montgomery 2017). Saturation maps are extracted from the production-history-matched (PHM) simulations and then compared with 4D predicted swept anomalies. An automated extraction method was created and is used to reconcile spatial sampling differences between 4D data and simulation output. Interpreted 4D data are compared with simulation output, and the mismatch generated is used as a 4D filter to refine the suite of reservoir-simulation models. The selected models are used to identify reservoir-simulation parameters that are sensitive for generating a good match. The application of 4DAHM workflows has resulted in reduced uncertainty in volumetric predictions of oil fields, probabilistic saturation S-curves at target locations, and fundamental changes to the dynamic model needed to improve the match to production data. Results from adopting this workflow in two different deepwater reservoirs are discussed. They not only resulted in reduced uncertainty, but also provided information on key performance indicators that are critical in obtaining a robust history match. In the first case study presented, the deepwater oilfield 4DAHM resulted in a reduction of uncertainty by 20% of original oil in place (OOIP) and by 25% in estimated ultimate recoverable (EUR) oil in the P90 to P10 range estimates. In the second case study, 4DAHM workflow exploited discrepancies between 4D seismic and simulation data to identify features necessary to be included in the dynamic model. Connectivity was increased through newly interpreted interchannel erosional contacts, as well as subseismic faults. Moreover, the workflow provided an improved drilling location, which has the higher probability of tapping unswept oil and better EUR. The 4D filters constrained the suite of reservoir-simulation models and helped to identify four of 24 simulation parameters critical for success. The updated PHM models honor both the production data and 4D interpretations, resulting in reduced uncertainty across the S-curve and, in this case, an increased P50 OOIP of 24% for a proposed infill drilling location, plus a significant cycle-time savings.


Sign in / Sign up

Export Citation Format

Share Document