scholarly journals Design Study of Coated Conductor Direct Drive Wind Turbine Generator for Small Scale Demonstration

2012 ◽  
Vol 36 ◽  
pp. 753-758 ◽  
Author(s):  
Asger B. Abrahamsen ◽  
Bogi B. Jensen
2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Niklas Magnusson ◽  
Jan Christian Eliassen ◽  
Asger Bech Abrahamsen ◽  
Svein Magne Helleso ◽  
Magne Runde ◽  
...  

2019 ◽  
Vol 34 (4) ◽  
pp. 2218-2225 ◽  
Author(s):  
Xiaowei Song ◽  
Anne Bergen ◽  
Tiemo Winkler ◽  
Sander Wessel ◽  
Marcel ter Brake ◽  
...  

2021 ◽  
Vol 23 (06) ◽  
pp. 1525-1545
Author(s):  
Praval Sharma ◽  
◽  
Dr. Imran ◽  

The independent small-scale networks including sustainable power sources have been used in remote regions around the globe. Nonetheless, the irregularity of vitality sources may cause an enormous variance of the miniaturized scale framework recurrence. Because of consistently expanding vitality utilization, rising open familiarity with ecological assurance, and relentless advancement in power deregulation, distributed generation (DG) frameworks have pulled in expanded intrigue. Wind and photovoltaic (PV) power age are two of the most encouraging sustainable power source advancements. Fuel cell (FC) frameworks likewise show incredible potential in DG utilizations of things to come because of their quick innovation improvement and numerous benefits they have, for example, high effectiveness, zero or low outflow (of contamination gases), and adaptable measured structure. In proposition investigated work Integration of Distributed Generating Systems for Non-straight Loads will be proposed. A run-of-the-mill wind-PV-diesel reconciliation which comprises of diesel generator, PV framework, wind turbine generator (WTG), BESS, and burden, is utilized for the proposed models and controllers. We reenact and Integration Distributed Generating Systems for Non-straight Loads on the MATLAB/SIMULINK and portions of coordinated vitality frameworks are analyzed. The coordinated PV framework is normally controlled to work in the maximum power point tracking (MPPT) mode. The battery vitality stockpiling framework is worked inconsistent force charging or releasing mode. So as to give an incorporated vitality framework associated with lattice relying upon singular vitality necessities, the Integrated Energy Systems can be extra to a current vitality source to lessen petroleum product utilization or an independent for complete non-renewable energy source uprooting Through the broad joining of vitality foundations it is conceivable to upgrade the supportability, adaptability, steadiness, and productivity of the general vitality framework. The reproduction of incorporated vitality frameworks is done in MATLAB/SIMULINK. And all framework results will be done by Matlab reproduction is proposed for disconnected smaller scale matrices with sustainable sources. In the exhibited method, the pitch point controller is intended for wind turbine generator (WTG) framework to smooth breeze power yield. The proposed procedure is tried in a regular secluded incorporated small-scale network with both PV and wind turbine generators.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6633
Author(s):  
Huiseop Jeong ◽  
Hoseong Ji ◽  
Sanghyun Choi ◽  
Joonho Baek

The design and application of eddy current brakes (ECBs) should be simple; further, ECBs should be used semi-permanently. This study aimed to determine major parameters for designing an ECB that can be applied to a small-scale wind turbine generator. To this end, an ECB was developed that could actuate without additional power, thus improving the efficiency of the generator. A series of simulations were conducted for a parametric study to pre-design ECBs suitable for small wind turbines. The six parameters chosen were disk thickness, number of magnets, radial location of magnets from center of disk, magnet pole arrangement, magnetic flux density, and rotational speed. The simulations were conducted on COMSOL Multiphysics. The results indicated that the number of magnets and magnet pole arrangements can significantly affect the performance curve of ECBs. Moreover, the disk thickness and rotational speed are linearly proportional to the braking torque.


Author(s):  
Michael Kirschneck ◽  
Daniel J. Rixen ◽  
Henk Polinder ◽  
Ron A. J. van Ostayen

In large direct-drive off-shore wind turbine generators one challenge is to engineer the system to function securely with an air gap length of about a thousandth of the outer rotor diameter. Compared to the large diameter of the generator rotor, the rolling element bearings can only be constructed with a relatively limited size. This makes it challenging to design appropriate constructions able to transmit the large applied magnetic forces encountered in the air gap of direct drive wind turbine generators. Currently, this challenge is met by designing stiff heavy rotors that are able to withstand the forces in the air gap. Incorporating flexibility into the design of the rotor structure can lead to a lighter less expensive rotor. In order to be able to do this the magnetomechanical coupling in the air gap and its effect on the structural dynamics need to be taken into account when predicting the intended flexibility. This paper introduces an approach for a multiphysical modal analysis that makes it possible to predict the dynamics of the strongly coupled magnetomechanical system. The new method is validated using measurements of a simple lab setup. It is then applied to a single-bearing design direct-drive wind turbine generator rotor to calculate the changes of the structural dynamics caused by the electromagnetomechanical coupling.


2011 ◽  
Vol 26 (2) ◽  
pp. 428-434 ◽  
Author(s):  
Haining Wang ◽  
Chem Nayar ◽  
Jianhui Su ◽  
Ming Ding

Sign in / Sign up

Export Citation Format

Share Document