disk thickness
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6633
Author(s):  
Huiseop Jeong ◽  
Hoseong Ji ◽  
Sanghyun Choi ◽  
Joonho Baek

The design and application of eddy current brakes (ECBs) should be simple; further, ECBs should be used semi-permanently. This study aimed to determine major parameters for designing an ECB that can be applied to a small-scale wind turbine generator. To this end, an ECB was developed that could actuate without additional power, thus improving the efficiency of the generator. A series of simulations were conducted for a parametric study to pre-design ECBs suitable for small wind turbines. The six parameters chosen were disk thickness, number of magnets, radial location of magnets from center of disk, magnet pole arrangement, magnetic flux density, and rotational speed. The simulations were conducted on COMSOL Multiphysics. The results indicated that the number of magnets and magnet pole arrangements can significantly affect the performance curve of ECBs. Moreover, the disk thickness and rotational speed are linearly proportional to the braking torque.



Author(s):  
Ze-Yuan Tang ◽  
Ye-Fei Yuan

The Fe-K[Formula: see text] fluorescence lines are commonly observed in AGNs and X-ray binaries. The lines are believed to be originated from the reflection of the hard X-ray continuum near the inner-most region of the accretion disks of black holes. The geometry of the accretion disk is usually assumed to be infinitely thin, but this assumption is not appropriate when the accretion rate is moderately super-Eddington. With the increase of the accretion rate, the disk becomes thick, which will significantly affect the properties of the fluorescence lines. For instance, the polarized radiation is strongly depended on the geometry of the accretion disk. In this work, based on the lamp-post model, we study the polarization properties of the relativistic Fe-K[Formula: see text] lines from thick disks in the framework of fully general relativity. We find that with the increase of the disk thickness, the polarization degree (PD) at the blue edge of the iron line increase significantly, and there appears a peak at the profile of the PD of the iron emission line, which at most is one order higher that of the line from the thin disk. Thus, the polarization properties of relativistic broad Fe-K[Formula: see text] lines can be used to as a tool to diagnose the disk thickness.



2021 ◽  
Vol 913 (2) ◽  
pp. 129
Author(s):  
Ashutosh Tripathi ◽  
Askar B. Abdikamalov ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Honghui Liu


2020 ◽  
Vol 2 ◽  
pp. 100019
Author(s):  
Hospice A. Akpo ◽  
Gilbert Atindogbé ◽  
Maxwell C. Obiakara ◽  
Madaï A. Gbedolo ◽  
Finagnon G. Laly ◽  
...  


2019 ◽  
Vol 14 (S353) ◽  
pp. 13-15
Author(s):  
Suchira Sarkar ◽  
Chanda J. Jog

AbstractWe study the vertical stellar distribution of the Milky Way thin disk treated as a gravitationally coupled system of stars, HI and H2 gas in the field of dark matter halo, from R = 4 to 22 kpc. We show that the gas and halo gravity mainly constrain this vertical distribution toward the mid-plane in the inner and the outer Galaxy, respectively. The halo gravity reduces the disk thickness by a factor of 3-4 in the outer Galaxy. Despite this constraining effect the disk thickness increases steadily with radius, flaring steeply beyond 17 kpc, making a flaring disk a generic result.



2019 ◽  
Vol 113 ◽  
pp. 03015 ◽  
Author(s):  
Avinash Renuke ◽  
Alberto Traverso ◽  
Matteo Pascenti

This paper presents the experimental campaign on Tesla turbo expanders carried out at Thermo-chemical Power group (TPG) of University of Genoa, Italy. An experiment system is established using compressed air as a working fluid. A 200 W turbine is tested with rotational speed up to 40000 rpm. Experimental analysis focused mainly on the efficiency features of this expander, showing the impact on performance of different disk gaps, disk thickness, discharge holes, exhaust geometry, as a function of speed and mass flow. An improved version of 3 kW air Tesla turboexpander is built. Preliminary experimental results are discussed along with the effect of number of nozzles on the performance of the turbine.



2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.



2018 ◽  
Vol 617 ◽  
pp. A47 ◽  
Author(s):  
S. Ghosh ◽  
C. J. Jog

A typical galactic disk is observed to have a finite thickness. Here, we present the study of the physical effect of introduction of finite thickness on the generation of small-scale spiral arms by swing amplification in a differentially rotating galactic disk. The galactic disk is modelled first as a one-fluid system, and then as a gravitationally-coupled two-fluid (stars and gas) system where each fluid is taken as isothermal, and corotating with each other. We derived the equations governing the evolution of the non-axisymmetric perturbations in a sheared frame of reference while incorporating the effect of finite thickness of a galactic disk. We found that the finite thickness of a galactic disk has a generic trend of suppressing the growth of the non-axisymmetric perturbations via swing amplification. Moreover, even the observed range of disk-thickness values (∼300–500 pc) can lead to a complete suppression of swing amplification for Q ∼ 1.7, whereas for an infinitesimally-thin disk, the corresponding critical value is Q ∼ 2. For a two-fluid (stars and gas) system, the net amplification is shown to be set by the mutual interplay of the effect of interstellar gas in promoting the spiral features and the effect of finite thickness in preventing the spiral arms. The coexistence of these two opposite effects is shown to be capable of giving rise to diverse and complex dynamical behaviour.



2018 ◽  
Vol 861 (1) ◽  
pp. 24 ◽  
Author(s):  
J. Drew Hogg ◽  
Christopher S. Reynolds


Sign in / Sign up

Export Citation Format

Share Document