Channel estimation by reduced dimension decomposition for millimeter wave massive MIMO system

2021 ◽  
Vol 44 ◽  
pp. 101241
Author(s):  
Rong Dai ◽  
Yang Liu ◽  
Qin Wang ◽  
Yu Yu ◽  
Xin Guo
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4021
Author(s):  
Kaihua Luo ◽  
Xiaoping Zhou ◽  
Bin Wang ◽  
Jifeng Huang ◽  
Haichao Liu

Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rui Yin ◽  
Xin Zhou ◽  
Wei Qi ◽  
Celimuge Wu ◽  
Yunlong Cai

Although the millimeter wave (mmWave) massive multiple-input and multiple-output (MIMO) system can potentially boost the network capacity for future communications, the pilot overhead of the system in practice will greatly increase, which causes a significant decrease in system performance. In this paper, we propose a novel grouping-based channel estimation and tracking approach to reduce the pilot overhead and computational complexity while improving the estimation accuracy. Specifically, we design a low-complexity iterative channel estimation and tracking algorithm by fully exploiting the sparsity of mmWave massive MIMO channels, where the signal eigenvectors are estimated and tracked based on the received signals at the base station (BS). With the recovered signal eigenvectors, the celebrated multiple-signal classification (MUSIC) algorithm can be employed to estimate the direction of arrival (DoA) angles and the path amplitude for the user terminals (UTs). To improve the estimation accuracy and accelerate the tracking speed, we develop a closed-form solution for updating the step-size in the proposed iterative algorithm. Furthermore, a grouping method is proposed to reduce the number of sharing pilots in the scenario of multiple UTs to shorten the pilot overhead. The computational complexity of the proposed algorithm is analyzed. Simulation results are provided to verify the effectiveness of the proposed schemes in terms of the estimation accuracy, tracking speed, and overhead reduction.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 49738-49749
Author(s):  
Ting Jiang ◽  
Maozhong Song ◽  
Xuejian Zhao ◽  
Xu Liu

Sign in / Sign up

Export Citation Format

Share Document