Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data

2016 ◽  
Vol 445 ◽  
pp. 57-65 ◽  
Author(s):  
D. Subhakar ◽  
E. Chandrasekhar
Author(s):  
Javier Gómez-Gómez ◽  
Rafael Carmona-Cabezas ◽  
Ana B. Ariza-Villaverde ◽  
Eduardo Gutiérrez de Ravé ◽  
Francisco José Jiménez-Hornero

Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.


Sign in / Sign up

Export Citation Format

Share Document