Multifractal characterization of mechanical vibration signals through improved empirical mode decomposition-based detrended fluctuation analysis

Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Jiming Li ◽  
Yongji Sun ◽  
Xuezhen Cheng

Microcharge induction has recently been applied as a dust detection method. However, in complex environments, the detection device can be seriously polluted by noise. To improve the quality of the measured signal, the characteristics of both the signal and the noise should be analyzed so as to determine an effective noise removal method. Traditional removal methods mostly deal with specific noise signals, and it is difficult to consider the correlation of measured signals between adjacent time periods. To overcome this shortcoming, we describe a method in which wavelet decomposition is applied to the measured signal to obtain sub-band components in different frequency ranges. A time-lapse Pearson method is then used to analyze the correlation of the sub-band components and the noise signal. This allows the sub-band component of the measurement signal that has the strongest correlation with the noise to be determined. Based on multifractal detrended fluctuation analysis combined with empirical mode decomposition, the similarity between the signal sub-band components and the noise sub-band components is analyzed and three indices are employed to determine the multifractal characteristics of the sub-band components. The consistency between noise components and signal components is obtained and the main signal components are verified. Finally, the sub-band components are used to reconstruct the signal, giving the noise-free measured (microcharge induction) signal. The filtered signal presents smoother, multifractal features.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 209 ◽  
Author(s):  
Jiming Li ◽  
Xinyan Ma ◽  
Meng Zhao ◽  
Xuezhen Cheng

A power grid harmonic signal is characterized as having both nonlinear and nonstationary features. A novel multifractal detrended fluctuation analysis (MFDFA) algorithm combined with the empirical mode decomposition (EMD) theory and template movement is proposed to overcome some shortcomings in the traditional MFDFA algorithm. The novel algorithm is used to study the multifractal feature of harmonic signals at different frequencies. Firstly, the signal is decomposed and the characteristics of wavelet transform multiresolution analysis are employed to obtain the components at different frequency bands. After this, the local fractal characteristic of the components is studied by utilizing the novel MFDFA algorithm. The experimental results show that the harmonic signals exhibit obvious multifractal characteristics and that the multifractal intensity is related to the signal frequency. Compared with the traditional MFDFA algorithm, the proposed method is more stable in curve fitting and can extract the multifractal features more accurately.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hongmei Liu ◽  
Jiayao Jing ◽  
Jian Ma

Electromechanical actuators (EMAs) are more and more widely used as actuation devices in flight control system of aircrafts and helicopters. The reliability of EMAs is vital because it will cause serious accidents if the malfunction of EMAs occurs, so it is significant to detect and diagnose the fault of EMAs timely. However, EMAs often run under variable conditions in realistic environment, and the vibration signals of EMAs are nonlinear and nonstationary, which make it difficult to effectively achieve fault diagnosis. This paper proposed a fault diagnosis method of electromechanical actuators based on variational mode decomposition (VMD) multifractal detrended fluctuation analysis (MFDFA) and probabilistic neural network (PNN). First, the vibration signals were decomposed by VMD into a number of intrinsic mode functions (IMFs). Second, the multifractal features hidden in IMFs were extracted by using MFDFA, and the generalized Hurst exponents were selected as the feature vectors. Then, the principal component analysis (PCA) was introduced to realize dimension reduction of the extracted feature vectors. Finally, the probabilistic neural network (PNN) was utilized to classify the fault modes. The experimental results show that this method can effectively achieve the fault diagnosis of EMAs even under diffident working conditions. Simultaneously, the diagnosis performance of the proposed method in this paper has an advantage over that of EMD-MFDFA method for feature extraction.


Sign in / Sign up

Export Citation Format

Share Document