scholarly journals Spatio-temporal characterization of thermal fluctuations in a non-turbulent Rayleigh–Bénard convection at steady state

2020 ◽  
Vol 547 ◽  
pp. 123867 ◽  
Author(s):  
Yash Yadati ◽  
Nicholas Mears ◽  
Atanu Chatterjee
1989 ◽  
Vol 209 ◽  
pp. 309-334 ◽  
Author(s):  
M. A. Rubio ◽  
P. Bigazzi ◽  
L. Albavetti ◽  
S. Ciliberto

By means of an original optical technique we have studied the spatio-temporal behaviour in a Rayleigh–Bénard convection experiment of small rectangular geometry. The experimental technique allows complete reconstruction of the temperature field integrated along the roll axis. Two main spatiotemporal regimes have been found, corresponding to localized oscillations and travelling waves respectively. Several parameters are proposed for the quantitative characterization of this complex behaviour.


2001 ◽  
Vol 11 (01) ◽  
pp. 27-41 ◽  
Author(s):  
ISABEL MERCADER ◽  
JOANA PRAT ◽  
EDGAR KNOBLOCH

The effects of weak breaking of the midplane reflection symmetry on the 1:2 steady state mode interaction in Rayleigh–Bénard convection are discussed in a PDE setting. Effects of this type arise from the inclusion of non-Boussinesq terms or due to small differences in the boundary conditions at the top and bottom of the convecting layer. The latter provides the simplest realization, and captures all qualitative effects of such symmetry breaking. The analysis is performed for two Prandtl numbers, σ=10 and σ=0.1, representing behavior typical of large and low Prandtl numbers, respectively.


2019 ◽  
Vol 874 ◽  
pp. 263-284 ◽  
Author(s):  
Yin Wang ◽  
Xiaozhou He ◽  
Penger Tong

We report a systematic study of spatial variations of the probability density function (PDF) $P(\unicode[STIX]{x1D6FF}T)$ for temperature fluctuations $\unicode[STIX]{x1D6FF}T$ in turbulent Rayleigh–Bénard convection along the central axis of two different convection cells. One of the convection cells is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. By changing the distance $z$ away from the bottom conducting plate, we find the functional form of the measured $P(\unicode[STIX]{x1D6FF}T)$ in both cells evolves continuously with distinct changes in four different flow regions, namely, the thermal boundary layer, mixing zone, turbulent bulk region and cell centre. By assuming temperature fluctuations in different flow regions are all made from two independent sources, namely, a homogeneous (turbulent) background which obeys Gaussian statistics and non-uniform thermal plumes with an exponential distribution, we obtain the analytic expressions of $P(\unicode[STIX]{x1D6FF}T)$ in four different flow regions, which are found to be in good agreement with the experimental results. Our work thus provides a unique theoretical framework with a common set of parameters to quantitatively describe the effect of turbulent background, thermal plumes and their spatio-temporal intermittency on the temperature PDF $P(\unicode[STIX]{x1D6FF}T)$.


Author(s):  
Ojas Satbhai ◽  
Subhransu Roy ◽  
Sudipto Ghosh

Direct numerical simulations for low Prandtl number fluid (Pr = 0.0216) are used to study the steady-state Rayleigh–Bénard convection (RB) in a two-dimensional unit aspect ratio box. The steady-state RB convection is characterized by analyzing the time-averaged temperature-field, and flow field for a wide range of Rayleigh number (2.1 × 105 ⩽ Ra ⩽ 2.1 × 108). It is seen that the time-averaged and space-averaged Nusselt number (Nuh¯) at the hot-wall monotonically increases with the increase in Rayleigh number (Ra) and the results show a power law scaling Nuh¯∝Ra0.2593. The current Nusselt number results are compared with the results available in the literature. The complex flow is analyzed by studying the frequency power spectra of the steady-state signal of the vertical velocity at the midpoint of the box for different Ra and probability density function of dimensionless temperature at various locations along the midline of the box.


Sign in / Sign up

Export Citation Format

Share Document