scholarly journals Modified embedded atom method potential for Fe-Al intermetallics mechanical strength: A comparative analysis of atomistic simulations

2021 ◽  
pp. 413157
Author(s):  
Muhammad Zeeshan Khalid ◽  
Jesper Friis ◽  
Per Harald Ninive ◽  
Knut Marthinsen ◽  
Inga Gudem Ringdalen ◽  
...  
2012 ◽  
Vol 85 (24) ◽  
Author(s):  
B. Jelinek ◽  
S. Groh ◽  
M. F. Horstemeyer ◽  
J. Houze ◽  
S. G. Kim ◽  
...  

2004 ◽  
Vol 818 ◽  
Author(s):  
Guofeng Wang ◽  
M.A. Van Hove ◽  
P.N. Ross ◽  
M.I. Baskes

AbstractWe have developed interatomic potentials for Pt-Ni and Pt-Re alloys within the modified embedded atom method (MEAM). Furthermore, we applied these potentials to study the equilibrium structures of Pt75Ni25 and Pt75Re25 nanoparticles at T=600 K using the Monte Carlo method. In this work, the nanoparticles are assumed to have disordered fcc cubo-octahedral shapes (terminated by {111} and {100} facets) and contain from 586 to 4033 atoms (corresponding to a diameter from 2.5 to 5 nm). It was found that, due to surface segregation, (1) the Pt75Ni25 nanoparticles form a surface-sandwich structure: the Pt atoms are enriched in the outermost and third atomic shells, while the Ni atoms are enriched in the second atomic shell; (2) the equilibrium Pt75Re25 nanoparticles adopt a core-shell structure: a Pt-enriched shell surrounding a Pt-deficient core.


Sign in / Sign up

Export Citation Format

Share Document