Single-electron spin resonance in a g-factor-controlled semiconductor quantum dot

2010 ◽  
Vol 42 (4) ◽  
pp. 821-824 ◽  
Author(s):  
Takeshi Kutsuwa ◽  
Makoto Kuwahara ◽  
Keiji Ono ◽  
Hideo Kosaka
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Tomohiro Otsuka ◽  
Takashi Nakajima ◽  
Matthieu R. Delbecq ◽  
Shinichi Amaha ◽  
Jun Yoneda ◽  
...  

2007 ◽  
Vol 78 (10) ◽  
pp. 104704 ◽  
Author(s):  
Toshiaki Obata ◽  
Michel Pioro-Ladrière ◽  
Toshihiro Kubo ◽  
Katsuharu Yoshida ◽  
Yasuhiro Tokura ◽  
...  

2008 ◽  
Vol 100 (15) ◽  
Author(s):  
Martin Kroner ◽  
Kathrina M. Weiss ◽  
Benjamin Biedermann ◽  
Stefan Seidl ◽  
Stephan Manus ◽  
...  

2007 ◽  
Vol 40 (2) ◽  
pp. 351-354
Author(s):  
T. Obata ◽  
M. Pioro-Ladrière ◽  
T. Kubo ◽  
K. Yoshida ◽  
Y. Tokura ◽  
...  

2007 ◽  
Vol 101 (8) ◽  
pp. 081706 ◽  
Author(s):  
F. H. L. Koppens ◽  
C. Buizert ◽  
I. T. Vink ◽  
K. C. Nowack ◽  
T. Meunier ◽  
...  

1990 ◽  
Vol 68 (4) ◽  
pp. 640-643
Author(s):  
Mary Jane Walzak ◽  
John R. Harbour

Electron spin resonance spectroscopy (ESR) has been used to investigate the electrochemical and photolytic behaviour of particulate C.I. Pigment Red 122. Heterogeneous electrochemical reduction and oxidation of the pigment resulted in different reversible ESR signals with the radical cation giving a signal of ΔHpp = 2.3 G and g-factor of 2.0033 and the radical anion giving ΔHpp = 3.2 G and g-factor 2.0039. On exposure to light the inherent ESR signal, which was determined to be a two-component signal, increased in intensity by a factor of 2.4 but did not change in linewidth or g-factor. This light-induced signal was reversible and decayed to initial levels in the dark. The mechanism of these reactions is discussed. Keywords: ESR, pigment, electrochemistry, photo effects.


Sign in / Sign up

Export Citation Format

Share Document