Effect of magnetic field on dynamic response function in Ising systems

2013 ◽  
Vol 377 (38) ◽  
pp. 2487-2493 ◽  
Author(s):  
A. Pawlak ◽  
R. Erdem
Author(s):  
Zhiqiang Cui

The purpose of tokamak plasma diagnostics is to provide the necessary parameters for device protection, operation, and maintenance. It can also supply parameters for fusion physics research. As one of the main ways to diagnose nuclear fusion plasma, neutron diagnosis focuses on the detection of neutrons, produced by the D-D and D-T fusion reactions, to obtain the physical information of internal plasma. Neutron measurements are widely performed on tokamak to provide the essential information on the neutron yield rate of the plasma that is related to fusion power. Since neutron has no electric charge, neutron can’t be ionized directly by the interaction of electrons in the detection material. The interactions between neutron and nuclei, such as nuclear reaction and nuclear recoil, are used to detect neutrons. According to the front sensitive materials, neutron detectors can be divided into gas detectors, scintillator detectors, semiconductor detectors, ionization chambers and so on. Since the magnetic field surrounding Tokamak can have a magnificent influence on the performance of photo-electronic multiplier tubes (PMTs), it is necessary to employ magnetic shielding in designing detectors, thus guaranteeing the proper operation of detectors within a strong magnetic field. Although the PMTs are equipped with magnetic shielding materials by manufacturers, they can only resist the influence of geomagnetic field. Besides the magnetic shielding and neutron/gamma shielding, neutron detectors should be calibrated before used on the tokamak. Nine similar detectors were assembled and calibrated in this paper. The basic idea of processing calibration data is that we should adjust the resolution and the light response function in order to make experiment spectrum and simulation spectrum fit on the recoil proton edge. A special explication is given to the data processing of neutron calibration, followed by an analysis of its resulting light response function and by comparison with PTB’s results.


2015 ◽  
Vol 40 (6) ◽  
pp. 1707-1726 ◽  
Author(s):  
A. Ghorbanpour Arani ◽  
M. Yousefi ◽  
S. Amir ◽  
P. Dashti ◽  
A. B. Chehreh

2016 ◽  
Vol 16 (08) ◽  
pp. 1550046 ◽  
Author(s):  
T.-P. Chang

In the present study, we investigate the statistical nonlinear dynamic behaviors of a single-walled carbon nanotube (SWCNT) subjected to a longitudinal magnetic field by considering the effect of geometric nonlinearity. We consider both the Young’s modulus of elasticity and mass density of the SWCNT as stochastic with respect to the position to actually characterize the random material properties of the SWCNT. In addition, we use the theory of nonlocal elasticity to investigate the small scale effect on the nonlinear vibration of the SWCNT. By using the Hamilton’s principle, the nonlinear governing equations of the SWCNT subjected to a longitudinal magnetic field are derived. We utilize the stochastic finite element method along with the perturbation technique to compute the statistical response of the SWCNT. Some statistical dynamic response of the SWCNT, such as the mean values and standard deviations of the midpoint deflections, are computed and checked by the Monte Carlo simulation, besides, the effects of the small scale coefficients, magnetic field and the elastic stiffness of matrix on the statistical dynamic response of the SWCNT are studied and discussed.


Sign in / Sign up

Export Citation Format

Share Document