energy calibration
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 80)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 16 (12) ◽  
pp. P12030
Author(s):  
F. Alcalde Bessia ◽  
J. Lipovetzky ◽  
I. Perić

Abstract This work presents the design of BUSARD, an application specific integrated circuit (ASIC) for the detection of ionizing particles. The ASIC is a monolithic active pixel sensor which has been fabricated in a High-Voltage Silicon-On-Insulator (HV-SOI) process that allows the fabrication of a buried N+ diffusion below the Buried OXide (BOX) as a standard processing step. The first version of the chip, BUSARD-A, takes advantage of this buried diffusion as an ionizing particle sensor. It includes a small array of 13×13 pixels, with a pitch of 80 μm, and each pixel has one buried diffusion with a charge amplifier, discriminator with offset tuning and digital processing. The detector has several operation modes including particle counting and Time-over-Threshold (ToT). An initial X-ray characterization of the detector was carried out, obtaining several pulse height and ToT spectra, which then were used to perform the energy calibration of the device. The Molybdenum 𝐊α emission was measured with a standard deviation of 127 e- of ENC by using the analog pulse output, and with 276 e- of ENC by using the ToT digital output. The resolution in ToT mode is dominated by the pixel-to-pixel variation.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Alain Blondel ◽  
Eliana Gianfelice

AbstractThe capability to determine the FCC-ee centre-of-mass energies (ECM) at the ppm level using resonant depolarization of the beams is essential for the Z line shape measurements, the W mass and the possible observation of the Higgs boson s-channel production. A first analysis (Blondel A et al Polarization and centre-of-mass energy calibration at FCC-ee. arXiv:1909.12245) demonstrated the feasibility of this programme, conditional to careful preparation and a number of further developments. The existing simulation codes must be unified; the analysis and design of the instrumentation must be developed; and a detailed planning must be developed for the simultaneous and coordinated operation of the accelerator, of the continuous polarization and depolarization measurements, and of the beam monitoring devices, ensuring a precise extrapolation from beam energies to centre-of-mass energy and energy spread.


Author(s):  
Chaoyue Zhang ◽  
Xiaohua Liang ◽  
Yanbing Xu ◽  
Wenxi Peng ◽  
Jianjian He ◽  
...  

2021 ◽  
Vol 16 (10) ◽  
pp. P10004
Author(s):  
J. Leidner ◽  
F. Murtas ◽  
M. Silari

AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085307
Author(s):  
D. Pantelica ◽  
C. R. Nita ◽  
R. A. Ionescu ◽  
M. D. Mihai ◽  
P. Ionescu

2021 ◽  
Vol 136 (8) ◽  
Author(s):  
Juan Alcaraz Maestre ◽  
Alain Blondel ◽  
Mogens Dam ◽  
Patrick Janot

AbstractThe FCC-ee offers powerful opportunities for direct or indirect evidence for physics beyond the standard model, via a combination of high-precision measurements and searches for forbidden and rare processes and feebly coupled particles. A key element of FCC-ee physics program is the measurement of the Z lineshape from a total of $$5\times 10^{12}$$ 5 × 10 12 Z bosons and a beam-energy calibration with relative uncertainty of $$10^{-6}$$ 10 - 6 . With this exceptionally large event sample, five orders of magnitude larger than that accumulated during the whole LEP1 operation at the Z pole, the defining parameters—$$m_\mathrm{Z}$$ m Z , $$\Gamma _\mathrm{Z}$$ Γ Z , $$N_\nu $$ N ν , $$\sin ^2\theta _\mathrm{W}^\mathrm{eff}$$ sin 2 θ W eff , $$\alpha _\mathrm{S}(m_\mathrm{Z}^2)$$ α S ( m Z 2 ) , and $$\alpha _\mathrm{QED}(m^2_\mathrm{Z})$$ α QED ( m Z 2 ) —can be extracted with a leap in accuracy of up to two orders of magnitude with respect to the current state of the art. The ultimate goal that experimental and theory systematic errors match the statistical accuracy (4 keV on the Z mass and width, $$3\times 10^{-6}$$ 3 × 10 - 6 on $$\sin ^2\theta _\mathrm{W}^\mathrm{eff}$$ sin 2 θ W eff , a relative $$3\times 10^{-5}$$ 3 × 10 - 5 on $$\alpha _\mathrm{QED}$$ α QED , and less than 0.0001 on $$\alpha _\mathrm{S}$$ α S ) leads to highly demanding requirements on collider operation, beam instrumentation, detector design, computing facilities, theoretical calculations, and Monte Carlo event generators. Such precise measurements also call for innovative analysis methods, which require a joint effort and understanding between theorists, experimenters, and accelerator teams.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Kirill Chernenko ◽  
Antti Kivimäki ◽  
Rainer Pärna ◽  
Weimin Wang ◽  
Rami Sankari ◽  
...  

FinEstBeAMS (Finnish–Estonian Beamline for Atmospheric and Materials Sciences) is a multidisciplinary beamline constructed at the 1.5 GeV storage ring of the MAX IV synchrotron facility in Lund, Sweden. The beamline covers an extremely wide photon energy range, 4.5–1300 eV, by utilizing a single elliptically polarizing undulator as a radiation source and a single grazing-incidence plane grating monochromator to disperse the radiation. At photon energies below 70 eV the beamline operation relies on the use of optical and thin-film filters to remove higher-order components from the monochromated radiation. This paper discusses the performance of the beamline, examining such characteristics as the quality of the gratings, photon energy calibration, photon energy resolution, available photon flux, polarization quality and focal spot size.


2021 ◽  
Author(s):  
Yu Chen ◽  
Tyler Anderson ◽  
Stephane Coutu ◽  
Tyler LaBree ◽  
Jason Link ◽  
...  

2021 ◽  
Author(s):  
Edward Reber ◽  
Dawn Scates ◽  
Ryan Fronk

Sign in / Sign up

Export Citation Format

Share Document