scholarly journals Bipartite entanglement in the spin-1/2 Ising-Heisenberg planar lattice constituted of identical trigonal bipyramidal plaquettes

2020 ◽  
Vol 384 (25) ◽  
pp. 126629
Author(s):  
Lucia Gálisová
2019 ◽  
Author(s):  
Min Zhou ◽  
Jet Tsien ◽  
Tian Qin

<p>Herein we report a sulfur (IV) mediated cross-coupling for facile synthesis of heteroaromatic substrates. Addition of heteroaryl nucleophiles onto a simple, readily-accessible alkyl sulfinyl (IV) chloride allows formation of a trigonal bipyramidal sulfurane intermediate. Reductive elimination therefrom provides bis-heteroaryl products in a practical and efficient fashion. <br></p>


2020 ◽  
pp. 15-19
Author(s):  
M.N. Kirsanov

Formulae are obtained for calculating the deformations of a statically determinate lattice under the action of two types of loads in its plane, depending on the number of panels located along one side of the lattice. Two options for fixing the lattice are analyzed. Cases of kinematic variability of the structure are found. The distribution of forces in the rods of the lattice is shown. The dependences of the force loading of some rods on the design parameters are obtained. Keywords: truss, lattice, deformation, exact solution, deflection, induction, Maple system. [email protected]


1987 ◽  
Author(s):  
James H. Williams ◽  
Nagem Jr. ◽  
Raymond J.

1991 ◽  
Vol 403 (1-2) ◽  
pp. 269-277 ◽  
Author(s):  
Vincenzo De Felice ◽  
Vincenzo G. Albano ◽  
Carlo Castellari ◽  
Maria E. Cucciolito ◽  
Augusto De Renzi

2016 ◽  
Vol 45 (43) ◽  
pp. 17104-17107 ◽  
Author(s):  
Rong-Jia Wei ◽  
Ryohei Nakahara ◽  
Jamie M. Cameron ◽  
Graham N. Newton ◽  
Takuya Shiga ◽  
...  

A cyanide-bridged trigonal bipyramidal [Co3Fe2] cluster shows solvent-driven reversible on/off switching of its thermally induced electron-transfer-coupled spin transition behaviour.


2014 ◽  
Vol 92 (6) ◽  
pp. 496-507 ◽  
Author(s):  
Hans Reuter ◽  
Hilko Wilberts

The syntheses and crystal structures of [(t-Bu2Sn)3O(OH)2]CO3·3MeOH, 1a, [(t-Bu2Sn)3O(OH)2]CO3·3H2O·acetone, 1b, [(t-Bu2Sn)3O(OH)2][I]2·[(t-Bu2Sn(OH)I]2·2DMSO, 1c, and [(Cy2Sn)3O(OH)2][I]2·2DMSO, 2a, all containing the trinuclear [(R2Sn)3O(OH)2]2+ ion have been described. The butterfly shape of this cation is derived from two annulated, four-membered tin–oxygen rings with a central μ3-oxygen atom and trigonal-bipyramidally coordinated tin atom both belonging to both rings and two μ2-hydroxyl groups and two outer, four-fold coordinated tin atoms. In 1a and 1b, the carbonate anions interact with the outer tin atoms of the cations as bidentate chelating ligands in the classical syn–syn coordination mode, and vice versa. In this way, both outer tin atoms expand their coordination sphere from four to five, with the consequence that bond angles and lengths within the cation are determined by the axial and equatorial position of the oxygen atoms within the trigonal-bipyramidal coordination on all three tin atoms. 1c consists of two different building units, an up to now unknown hydroxide iodide of composition [(t-Bu2Sn(OH)I]2 with hydrogen-bonded DMSO molecules and a [(t-Bu2Sn)3O(OH)2]2+ cation with one coordinated and one isolated, via hydrogen bonds connected iodine ion. The hydroxide iodine is built up of two five-fold coordinated tin atoms linked via two hydroxyl groups with exocyclic iodine atoms occupying axial positions at the trigonal-biypramidally coordinated tin atoms. The unprecedented coordination of the iodine ion to the [(t-Bu2Sn)3O(OH)2]2+ cation takes place between both outer tin atoms, resulting in a five-fold, trigonal-bipyramidal coordination at these tin atoms, too. Structural parameters within the so-formed [(t-Bu2Sn)3O(OH)2I]+ complex are very similar to those of 1a and 1b, with the exception of a significant lengthening of the tin–oxygen bonds opposite to the bridging iodine atom. 2a represents the first example of the [(R2Sn)3O(OH)2]2+ cation without R = t-butyl, so far. In the solid, it consists of two crystallographic independent [(Cy2Sn)3O(OH)2][I]2 building units, each connected to two DMSO molecules via hydrogen bonds. Both building units are very similar with respect to their conformation. Each of the iodine anions coordinates with only one of the two outer tin atoms, one in an inwards, one in an outwards to the tin-oxygen framework directed position. These tin atoms are therefore also trigonal-bipyramidally coordinated as in 1a−1c, but because of steric reasons one of the trigonal-bipyramids has changed its orientation within the tin–oxygen framework, accompanied by enormous changes of bond lengths and angles therein.


Sign in / Sign up

Export Citation Format

Share Document