spin transition
Recently Published Documents


TOTAL DOCUMENTS

964
(FIVE YEARS 149)

H-INDEX

75
(FIVE YEARS 6)

Author(s):  
D.I. Radzivonchik ◽  
D.S. Neznakhin ◽  
A.V. Lukoyanov

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7135
Author(s):  
Dominik Maskowicz ◽  
Rafał Jendrzejewski ◽  
Wioletta Kopeć ◽  
Maria Gazda ◽  
Jakub Karczewski ◽  
...  

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.


2021 ◽  
Vol 922 (1) ◽  
pp. 6
Author(s):  
Jounghun Lee ◽  
Jun-Sung Moon ◽  
Suho Ryu ◽  
Suk-Jin Yoon

Abstract A numerical detection of the mass-dependent spin transition of the galaxies is presented. Analyzing a sample of the galaxies with stellar masses in the range of 109 < (M ⋆/M ⊙) ≤ 1011 from the IllustrisTNG300-1 simulations, we explore the alignment tendency between the galaxy baryon spins and the three eigenvectors of the linearly reconstructed tidal field as a function of M ⋆ and its evolution in the redshift range of 0 ≤ z ≤ 1.5. Detecting a significant signal of the occurrence of the mass-dependent transition of the galaxy spins, we show that the centrals differ from the satellites in their spin transition type. As M ⋆ increases beyond a certain threshold mass, the preferred directions of the central galaxy spins transit from the minor to the intermediate tidal eigenvectors (type two) at z = 0.5 and 1, while those of the satellites transit from the minor to the major tidal eigenvectors (type one) at z = 1 and 1.5. It is also shown that the mass range and type of the spin transition depend on the galaxy morphology, the degree of the alignments between the baryon and total spin vectors, and the environmental density. Meanwhile, the stellar spins of the galaxies are found to yield a weak signal of the T1 transitions at z = 0, whose strength and trend depend on the degree of the alignments between the stellar and baryon spins. The possible mechanisms responsible for the T1 and T2 spin transitions are discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1836
Author(s):  
Rachid Traiche ◽  
Hassane Oubouchou ◽  
Kamel Boukheddaden

Among the large family of spin-crossover materials, binuclear systems play an important role due to their specific molecular configurations, allowing the presence of multi-step transitions and elastic frustration. Although this issue benefited from a significant number of spin-based theories, there is almost no elastic description of the spin transition phenomenon in binuclear systems. To overcome this deficiency, in this work we develop the first elastic modeling of thermal properties of binuclear spin-crossover solids. At this end, we investigated a finite spin-crossover open chain constituted of elastically coupled binuclear (A = B) blocks, ⋯A=B−A=B−A=B⋯, in which the considered equivalent A and B sites may occupy two configurations, namely low-spin (LS) and high-spin (HS) states. The sites of the binuclear unit interact via an intramolecular spring and couple to the neighboring binuclear units via other springs. The model also includes the change of length inside and between the binuclear units subsequent to the spin state changes. When injecting an elastic frustration inside the binuclear unit in the LS state, competing interactions between the intra- and the inter-binuclear couplings emerge. The latter shows that according to the intra- and inter-binuclear elastic constants and the strength of the frustration, multi-step transitions are derived, for which a specific self-organization of type (HS = HS)-(LS-LS)-(HS = HS)⋯ is revealed and discussed. Finally, we have also studied the relaxation of the metastable photoinduced HS states at low temperature, in which two relaxation regimes with transient self-organized states were identified when monitoring the elastic frustration rate or the ratio of intra- and intermolecular elastic interactions. These behaviors are reminiscent of the thermal dependence of the order parameters of the system. The present model opens several possibilities of extensions of elastic frustrations acting in polynuclear spin-crossover systems, which may lead to other types of spin-state self-organizations and relaxation dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshiyuki Okuda ◽  
Kenji Ohta ◽  
Yu Nishihara ◽  
Naohisa Hirao ◽  
Tatsuya Wakamatsu ◽  
...  

AbstractThe crystallization of the magma ocean resulted in the present layered structure of the Earth’s mantle. An open question is the electronic spin state of iron in bridgmanite (the most abundant mineral on Earth) crystallized from a deep magma ocean, which has been neglected in the crystallization history of the entire magma ocean. Here, we performed energy-domain synchrotron Mössbauer spectroscopy measurements on two bridgmanite samples synthesized at different pressures using the same starting material (Mg0.78Fe0.13Al0.11Si0.94O3). The obtained Mössbauer spectra showed no evidence of low-spin ferric iron (Fe3+) from the bridgmanite sample synthesized at relatively low pressure of 25 gigapascals, while that directly synthesized at a higher pressure of 80 gigapascals contained a relatively large amount. This difference ought to derive from the large kinetic barrier of Fe3+ rearranging from pseudo-dodecahedral to octahedral sites with the high-spin to low-spin transition in experiments. Our results indicate a certain amount of low-spin Fe3+ in the lower mantle bridgmanite crystallized from an ancient magma ocean. We therefore conclude that primordial bridgmanite with low-spin Fe3+ dominated the deeper part of an ancient lower mantle, which would contribute to lower mantle heterogeneity preservation and call for modification of the terrestrial mantle thermal evolution scenarios.


2021 ◽  
Vol 143 (39) ◽  
pp. 16128-16135
Author(s):  
Tomoyuki Haraguchi ◽  
Kazuya Otsubo ◽  
Osami Sakata ◽  
Akihiko Fujiwara ◽  
Hiroshi Kitagawa

2021 ◽  
Vol 7 (8) ◽  
pp. 114
Author(s):  
José Elías Angulo-Cervera ◽  
Mario Piedrahita-Bello ◽  
Fabrice Mathieu ◽  
Thierry Leichle ◽  
Liviu Nicu ◽  
...  

We used a spray-coating process to cover silicon microcantilevers with ca. 33 wt% [Fe(Htrz)2(trz)](BF4)@P(VDF70-TrFE30) nanocomposite thin films of 1500 nm thickness. The bilayer cantilevers were then used to investigate the thermomechanical properties of the composites through a combined static and dynamic flexural analysis. The out-of-plane flexural resonance frequencies were used to assess the Young’s modulus of the spray-coated films (3.2 GPa). Then, the quasi-static flexural bending data allowed us to extract the actuation strain (1.3%) and an actuation stress (7.7 MPa) associated with the spin transition in the composite.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ya-Ru Qiu ◽  
Long Cui ◽  
Jing-Yuan Ge ◽  
Mohamedally Kurmoo ◽  
Guijun Ma ◽  
...  

Two polymorphic FeII coordination polymers [FeIIL (TPPE)0.5] 1) and [(FeII3L3 (TPPE)1.5)] 2), were obtained from a redox-active tetrathiafulvalene (TTF) functionalized ligand [H2L = 2,2’-(((2-(4,5-bis-(methylthio)-1,3-dithiol-2-ylidene)benzo(d) (1,3) dithiole-5,6-diyl)bis-(azanediyl))bis-(meth anylylidene)) (2E,2E')-bis(3-oxobutanoate)] and a highly luminescent connector {TPPE = 1,1,2,2-tetrakis[4-(pyridine-4-yl)phenyl]-ethene}. Complex 1 has a layered structure where the TPPE uses its four diverging pyridines from the TPPE ligand are coordinated by the trans positions to the flat TTF Schiff-base ligand, and complex 2 has an unprecedented catenation of layers within two interpenetrated frameworks. These coordination polymers reserved the redox activity of the TTF unit. Complex 1 shows gradual spin transition behavior without hysteresis. And the fluorescence intensity of TPPE in 1 changes in tandem with the spin crossover (SCO) transition indicating a possible interplay between fluorescence and SCO behavior.


2021 ◽  
Author(s):  
Alix Volte ◽  
Celine Mariette ◽  
Roman Bertoni ◽  
Marco Cammarata ◽  
Xu Dong ◽  
...  

Abstract Cooperative molecular switching at the solid state is exemplified by spin crossover phenomenon in crystals of transition metal complexes. Time-resolved studies with temporal resolutions that separate molecular level dynamics from macroscopic changes, afford clear distinction between the time scales of the different degrees of freedom involved. In this work we use 100 ps X-ray diffraction to follow simultaneously the molecular spin state and the structure of the lattice during the photoinduced low spin to high spin transition in microcrystals of [FeIII(3-MeO-SalEen)2]PF6. We show the existence of a delay between the crystalline volume increase driven by the propagation of collective volumic strain waves, and the cooperative macroscopic switching of molecular state. Such behaviour is different from the expectation that phase transformation only requires atomic displacements in the unit cell, that can occur simultaneously with propagation of a volumic strain. Model simulations and discussions of the physical picture explain the phenomenon with thermally activated kinetics governed by local energy barriers separating the molecular states.


Sign in / Sign up

Export Citation Format

Share Document