scholarly journals Condition for the superradiance modes in higher-dimensional rotating black holes with multiple angular momentum parameters

2005 ◽  
Vol 619 (3-4) ◽  
pp. 347-351 ◽  
Author(s):  
Eylee Jung ◽  
Sung Hoon Kim ◽  
D.K. Park
2007 ◽  
Vol 22 (26) ◽  
pp. 4849-4858 ◽  
Author(s):  
A. SHEYKHI ◽  
N. RIAZI

We consider charged black holes with curved horizons, in five-dimensional dilaton gravity in the presence of Liouville-type potential for the dilaton field. We show how, by solving a pair of coupled differential equations, infinitesimally small angular momentum can be added to these static solutions to obtain charged rotating dilaton black hole solutions. In the absence of dilaton field, the nonrotating version of the solution reduces to the five-dimensional Reissner–Nordström black hole, and the rotating version reproduces the five-dimensional Kerr–Newman modification thereof for small rotation parameter. We also compute the angular momentum and the angular velocity of these rotating black holes which appear at the first order.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. H. Hendi ◽  
M. Allahverdizadeh

We study charged slowly rotating black hole with a nonlinear electrodynamics (NED) in the presence of cosmological constant. Starting from the static solutions of Einstein-NED gravity as seed solutions, we use the angular momentum as the perturbative parameter to obtain slowly rotating black holes. We perform the perturbations up to the linear order for black holes in 4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameteraas well as the nonlinearity parameterβ. In the limitβ→∞, the solution describes slowly rotating AdS type black holes.


2004 ◽  
Vol 21 (14) ◽  
pp. 3483-3498 ◽  
Author(s):  
Valeri P Frolov ◽  
Dmitri V Fursaev ◽  
Dejan Stojkovi

2006 ◽  
Vol 15 (02) ◽  
pp. 171-188 ◽  
Author(s):  
GAUTAM SENGUPTA

A black string generalization of the Myers–Perry N-dimensional rotating black hole is considered in an (N + 1)-dimensional Randall–Sundrum brane world. The black string intercepts the (N - 1) brane in a N-dimensional rotating black hole. We examine the diverse cases arising for various non-zero rotation components and obtain the geodesic equations for these space–times. The causal structure and asymptotics of the resulting brane world geometries are analyzed.


Sign in / Sign up

Export Citation Format

Share Document