charged black holes
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 102)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Óscar J. C. Dias ◽  
Gary T. Horowitz ◽  
Jorge E. Santos

Abstract We study a family of four-dimensional, asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Surprisingly, the maximum charge for given mass is a nonsingular hairy black hole with nonzero Hawking temperature. The implications for Hawking evaporation are discussed.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
G. G. L. Nashed ◽  
Shin’ichi Nojiri

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 483
Author(s):  
Carlos A. R. Herdeiro ◽  
Alexandre M. Pombo ◽  
Eugen Radu

The general relativity vacuum black holes (BHs) can be scalarised in models where a scalar field non-minimally couples to the Gauss-Bonnet (GB) invariant. Such GB scalarisation comes in two flavours, depending on the GB sign that triggers the phenomenon. Hereafter these two cases are termed GB± scalarisation. For vacuum BHs, only GB+ scalarisation is possible in the static case, while GB− scalarisation is spin induced. But for electrovacuum BHs, GB− is also charged induced. We discuss the GB− scalarisation of Reissner-Nordström and Kerr-Newman BHs, discussing zero modes and constructing fully non-linear solutions. Some comparisons with GB+ scalarisation are given. To assess the generality of the observed features, we also briefly consider the GB± scalarisation of stringy dilatonic BHs and coloured BHs which provide qualitative differences with respect to the electrovacuum case, namely on the distribution and existence of regions triggering GB− scalarisation.


2021 ◽  
Vol 34 ◽  
pp. 11-17
Author(s):  
V.D. Gladush

Some properties of the configuration space (CS) of charged black holes (BH) we are considered. A reduced action for the spherically symmetric configuration of the gravitational and electromagnetic fields is constructed. We restrict ourselves to considering of T-region, where the studied fields have a dynamic meaning. Using the Hamiltonian constraint, we exclude the nondynamic degree of freedom. This leads to the action of the system in the CS with the corresponding supermetric. It turns out that the CS is flat, and its metric admits a twoparametric group of motions. This group generates conservation laws for the geodesic equations. The first law is the charge conservation law, and second is the mass conservation law (the mass function). Using the Hamiltonian constraint, they allow one to find momenta as a function of the field variables andcalculate the action as a function of the conserved quantities and field variables in CS. We emphasize that to find this  action, we use only the integrability condition for a differential form. The quantization of the system is reduced to the  uantization of a free particle in a three-dimensional pseudo-Euclidean space. The natural measure corresponding to the CS metric is used to construct the Hermitian DeWitt and mass operators. Based on the self-consistent solution of quantum  DeWitt equations and equations for the eigenvalues of the mass and charge operators, the wave function for the spherically  symmetric configuration of the gravitational and electromagnetic fields in the T- region is constructed. As a result, we get a model of charged BH with continuous mass and charge spectra.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sérgio V. M. C. B. Xavier ◽  
Carolina L. Benone ◽  
Luís C. B. Crispino

AbstractWe investigate the absorption of planar massless scalar waves by a charged rotating stringy black hole, namely a Kerr–Sen black hole. We compute numerically the absorption cross section and compare our results with those of the Kerr–Newman black hole, a classical general relativity solution. In order to better compare both charged black holes, we define the ratio of the black hole charge to the extreme charge as Q. We conclude that Kerr–Sen and Kerr–Newman black holes have a similar absorption cross section, with the difference increasing for higher values of Q.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Óscar J. C. Dias ◽  
Gary T. Horowitz ◽  
Jorge E. Santos

Abstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair.


Author(s):  
Yong Xiao ◽  
Longting Zhang

Abstract The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties, but the black hole solutions in this theory are still not fully understood. In the paper, we concentrate on studying the charged black holes in such a theory. Adding the electromagnetic field part to the effective action, we show how the black hole solutions around the Reissner-Nordstr{\"o}m metric can be solved perturbatively and iteratively. We further calculate the corresponding temperature, entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document