Tunneling black hole radiation, generalized uncertainty principle and de Sitter–Schwarzschild black hole

2009 ◽  
Vol 682 (1) ◽  
pp. 114-117 ◽  
Author(s):  
A. Farmany ◽  
M. Dehghani ◽  
M.R. Setare ◽  
S.S. Mortazavi
2019 ◽  
Vol 79 (11) ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Won Sang Chung ◽  
M. de Montigny

AbstractThis paper examines the effects of a new form of the extended generalized uncertainty principle in the Snyder–de Sitter model on the thermodynamics of the Schwarzschild and Reissner–Nordström black holes. Firstly, we present a generalization of the minimal length uncertainty relation with two deformation parameters. Then we obtain the corrected mass–temperature relation, entropy and heat capacity for Schwarzschild black hole. Also we investigate the effect of the corrected uncertainty principle on the thermodynamics of the charged black holes. Our discussion of the corrected entropy involves a heuristic analysis of a particle which is absorbed by the black hole. Finally, we compare the thermodynamics of a charged black hole with the thermodynamics of a Schwarzschild black hole and with the usual forms, that is, without corrections to the uncertainty principle.


Author(s):  
E Maghsoodi ◽  
H Hassanabadi ◽  
Won Sang Chung

Abstract We investigate the effect of the generalized uncertainty principle on the thermodynamic properties of the topological charged black hole in anti-de Sitter space within the framework of doubly special relativity. Our study is based on a heuristic analysis of a particle which is captured by the black hole. We obtain some thermodynamic properties of the black hole including temperature, entropy, and heat capacity in the spherical horizon case.


2012 ◽  
Vol 27 (39) ◽  
pp. 1250227 ◽  
Author(s):  
K. ZEYNALI ◽  
F. DARABI ◽  
H. MOTAVALLI

We study the black hole thermodynamics and obtain the correction terms for temperature, entropy, and heat capacity of the Schwarzschild black hole, resulting from the commutation relations in the framework of Modified Generalized Uncertainty Principle suggested by Doubly Special Relativity.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350029 ◽  
Author(s):  
M. M. STETSKO

We investigate a microscopic black hole in the case of modified generalized uncertainty principle with a minimal uncertainty in position as well as in momentum. We calculate thermodynamical functions of a Schwarzschild black hole such as temperature, entropy and heat capacity. It is shown that the incorporation of minimal uncertainty in momentum leads to minimal temperature of a black hole. Minimal temperature gives rise to appearance of a phase transition. Emission rate equation and black hole's evaporation time are also obtained.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950048 ◽  
Author(s):  
R. V. Maluf ◽  
Juliano C. S. Neves

Bardeen regular black hole is commonly considered as a solution of general relativity coupled to a nonlinear electrodynamics. In this paper, it is shown that the Bardeen solution may be interpreted as a quantum-corrected Schwarzschild black hole. This new interpretation is obtained by means of a generalized uncertainty principle applied to the Hawking temperature. Moreover, using the regular black hole of Bardeen, it is possible to evaluate the quantum gravity parameter of the generalized uncertainty principle or, assuming the recent upper bounds for such a parameter, to verify an enormous discrepancy between a cosmological constant and that measured by recent cosmological observations [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document