sitter model
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 57 (11) ◽  
pp. 1169
Author(s):  
V.E. Kuzmichev ◽  
V.V. Kuzmichev

We draw a comparison of time-dependent cosmological parameters calculated in the standard ΛCDM model with those of the model of a homogeneous and isotropic Universe with non-zero cosmological constant filled with a perfect gas of low-velocity cosmic strings (ΛCS model). It is shown that pressure-free matter can obtain the properties of a gas of low-velocity cosmic strings in the epoch, when the global geometry and the total amount of matter in the Universe as a whole obey an additional constraint. This constraint follows from the quantum geometrodynamical approach in the semiclassical approximation. In terms of general relativity, its effective contribution to the field equations can be linked to the time evolution of the equation of state of matter caused by the processes of redistribution of the energy between matter components. In the present article, the exact solutions of the Einstein equations for the ΛCS model are found. It is demonstrated that this model is equivalent to the open de Sitter model. After the scale transformation of the time variable of the ΛCS model, the standard ΛCDM and ΛCS models provide the equivalent descriptions of cosmological parameters as functions of time at equal values of the cosmological constant. The exception is the behavior of the deceleration parameter in the early Universe.


Author(s):  
Lakhdar Sek ◽  
Mokhtar Falek ◽  
Mustafa Moumni

We study analytically the two-dimensional deformed bosonic oscillator equation for charged particles (both spin 0 and spin 1 particles) subject to the effect of an uniform magnetic field. We consider the presence of a minimal uncertainty in momentum caused by the anti-de Sitter model and we use the Nikiforov–Uvarov (NU) method to solve the system. The exact energy eigenvalues and the corresponding wave functions are analytically obtained for both Klein–Gordon and scalar Duffin–Kemmer–Petiau (DKP) cases and we find that the deformed spectrum remains discrete even for large values of the principal quantum number. For spin 1 DKP case, we deduce the behavior of the DKP equation and write the nonrelativistic energies and we show that the space deformation adds a new spin-orbit interaction proportional to its parameter. Finally, we study the thermodynamic properties of the system and here we find that the effects of the deformation on the statistical properties are important only in the high-temperature regime.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150058
Author(s):  
B. Hamil ◽  
M. Merad ◽  
T. Birkandan

The Snyder–de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass and cosmological constant. In this paper, we study the three-dimensional DKP oscillator for spin-0 and spin-1 in the framework of Snyder–de Sitter algebra in momentum space. By using the technique of vector spherical harmonics the energy spectrum and the corresponding eigenfunctions are obtained for the both cases.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Cormac O’Raifeartaigh ◽  
Michael O’Keeffe ◽  
Simon Mitton

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 366
Author(s):  
Alexander Kritov

This paper presents a novel approach to the cosmological constant problem by the use of the Clifford algebras of space Cl3,0 and anti-space Cl0,3 with a particular focus on the paravector representation, emphasizing the fact that both algebras have a center represented just by two coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly accelerated frame with the constant acceleration 3H0c. Using the Rindler coordinate transformations in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW metric, which in the case of the Clifford algebra of space Cl3,0 corresponds to the anti-de Sitter (AdS) flat (k=0) case, the negative cosmological term and an oscillating model of the universe. The approach with anti-Euclidean Clifford algebra Cl0,3 leads to the de Sitter model with the positive cosmological term and the exact form of the scale factor used in modern cosmology.


Author(s):  
Alexander Kritov

The paper briefly reviews the Clifford algebras of space Cl(3,0) and anti-space Cl(0,3) with a particular focus on the paravector representation, emphasizing the fact that both algebras have an isomorphic center represented just by two coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly accelerated frame with the constant acceleration 3Hc. Using the Rindler coordinate transformations in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW metric, which in the case of the Clifford algebra of space Cl(3,0) corresponds to the anti-de Sitter (AdS) flat (k=0) case, the negative cosmological term and an oscillating model of the universe. The approach with anti-Euclidean Clifford algebra Cl(0,3) leads to the de Sitter model with the positive cosmological term and the exact form of the scale factor used in modern cosmology.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050180
Author(s):  
H. Benzair ◽  
T. Boudjedaa ◽  
M. Merad

In the context of Snyder–de Sitter (SdS) algebra, we formulate the D-dimensional momentum space path integral transition amplitude for harmonic oscillator and free particle. The exact energy spectrum and the corresponding normalized radial momentum space eigenfunctions are obtained through the different quantum corrections rule.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
Irina Streltsova

In 1917, de Sitter used the modified Einstein equation and proposed a model of the Universe without physical matter, but with a cosmological constant. De Sitter geometry, as well as Minkowski geometry, is maximally symmetrical. However, de Sitter geometry is better suited to describe gravitational fields. It is believed that the real Universe was described by the de Sitter model in the very early stages of expansion (inflationary model of the Universe). This article is devoted to the problem of classification of regular curves on the de Sitter space. As a model of the de Sitter plane, the upper half-plane on which the metric is given is chosen. For this purpose, an algebra of differential invariants of curves with respect to the motions of the de Sitter plane is constructed. As it turned out, this algebra is generated by one second-order differential invariant (we call it by de Sitter curvature) and two invariant differentiations. Thus, when passing to the next jets, the dimension of the algebra of differential invariants increases by one. The concept of regular curves is introduced. Namely, a curve is called regular if the restriction of de Sitter curvature to it can be considered as parameterization of the curve. A theorem on the equivalence of regular curves with respect to the motions of the de Sitter plane is proved. The singular orbits of the group of proper motions are described.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Alexander Balakin ◽  
Dmitry Groshev

We consider the magnetic monopole in the axionic dark matter environment (axionic dyon) in the framework of the Reissner-Nordström-de Sitter model. Our aim is to study the distribution of the pseudoscalar (axion) and electric fields near the so-called folds, which are characterized by the profiles with the central minimum, the barrier on the left, and the maximum on the right of this minimum. The electric field in the fold-like zones is shown to change the sign twice, i.e., the electric structure of the near zone of the axionic dyon contains the domain similar to a double electric layer. We have shown that the described fold-like structures in the profile of the gravitational potential, and in the profiles of the electric and axion fields can exist, when the value of the dyon mass belongs to the interval enclosed between two critical masses, which depend on the cosmological constant.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Won Sang Chung ◽  
M. de Montigny

AbstractThis paper examines the effects of a new form of the extended generalized uncertainty principle in the Snyder–de Sitter model on the thermodynamics of the Schwarzschild and Reissner–Nordström black holes. Firstly, we present a generalization of the minimal length uncertainty relation with two deformation parameters. Then we obtain the corrected mass–temperature relation, entropy and heat capacity for Schwarzschild black hole. Also we investigate the effect of the corrected uncertainty principle on the thermodynamics of the charged black holes. Our discussion of the corrected entropy involves a heuristic analysis of a particle which is absorbed by the black hole. Finally, we compare the thermodynamics of a charged black hole with the thermodynamics of a Schwarzschild black hole and with the usual forms, that is, without corrections to the uncertainty principle.


Sign in / Sign up

Export Citation Format

Share Document