scholarly journals Exit from inflation with a first-order phase transition and a gravitational wave blast

2015 ◽  
Vol 747 ◽  
pp. 446-453 ◽  
Author(s):  
Amjad Ashoorioon
2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Manuel Reichert ◽  
Francesco Sannino ◽  
Zhi-Wei Wang ◽  
Chen Zhang

Abstract We study the gravitational-wave signal stemming from strongly coupled models featuring both, dark chiral and confinement phase transitions. We therefore identify strongly coupled theories that can feature a first-order phase transition. Employing the Polyakov-Nambu-Jona-Lasinio model, we focus our attention on SU(3) Yang-Mills theories featuring fermions in fundamental, adjoint, and two-index symmetric representations. We discover that for the gravitational-wave signals analysis, there are significant differences between the various representations. Interestingly we also observe that the two-index symmetric representation leads to the strongest first-order phase transition and therefore to a higher chance of being detected by the Big Bang Observer experiment. Our study of the confinement and chiral phase transitions is further applicable to extensions of the Standard Model featuring composite dynamics.


2018 ◽  
Vol 33 (31) ◽  
pp. 1844019
Author(s):  
Jisuke Kubo

We consider two realistic models for a scale invariant extension of the standard model, which couples with a hidden non-Abelian gauge sector. At energies around TeV, the hidden sector becomes strongly interacting, thereby generating a robust energy scale, which is transferred to the standard model sector, triggering the electroweak symmetry breaking. At a finite temperature, i.e. in the early Universe, the generation of the robust energy scale appears as a strong first-order phase transition. We calculate the gravitational wave background spectrum for both models, which is produced by the first-order phase transition. We compare the results with the experimental sensitivity of LISA and DECIGO and find the gravitational wave signal may be detected at DECIGO.


2019 ◽  
Vol 34 (33) ◽  
pp. 1950223
Author(s):  
Mikael Chala ◽  
Valentin V. Khoze ◽  
Michael Spannowsky ◽  
Philip Waite

We study the dependence of the observable stochastic gravitational wave background induced by a first-order phase transition on the global properties of the scalar effective potential in particle physics. The scalar potential can be that of the Standard Model Higgs field, or more generally of any scalar field responsible for a spontaneous symmetry breaking in beyond-the-Standard-Model settings that provide for a first-order phase transition in the early universe. Characteristics of the effective potential include the relative depth of the true minimum [Formula: see text], the height of the barrier that separates it from the false one [Formula: see text] and the separation between the two minima in field space [Formula: see text], all at the bubble nucleation temperature. We focus on a simple yet quite general class of single-field polynomial potentials, with parameters being varied over several orders of magnitude. It is then shown that gravitational wave observatories such as aLIGO O5, BBO, DECIGO and LISA are mostly sensitive to values of these parameters in the region [Formula: see text]. Finally, relying on well-defined models and using our framework, we demonstrate how to obtain the gravitational wave spectra for potentials of various shapes without necessarily relying on dedicated software packages.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract Fermion dark matter particles can aggregate to form extended dark matter structures via a first-order phase transition in which the particles get trapped in the false vacuum. We study Fermi balls created in a phase transition induced by a generic quartic thermal effective potential. We show that for Fermi balls of mass, 3 × 10−12M⊙ ≲ MFB ≲ 10−5M⊙, correlated observations of gravitational waves produced during the phase transition (at SKA/THEIA/μAres), and gravitational microlensing caused by Fermi balls (at Subaru-HSC), can be made.


Sign in / Sign up

Export Citation Format

Share Document