scholarly journals Composite Higgs meets Planck scale: Partial compositeness from partial unification

2021 ◽  
pp. 136177
Author(s):  
Giacomo Cacciapaglia ◽  
Shahram Vatani ◽  
Chen Zhang
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hsin-Chia Cheng ◽  
Yi Chung

Abstract Composite Higgs models provide an attractive solution to the hierarchy problem. However, many realistic models suffer from tuning problems in the Higgs potential. There are often large contributions from the UV dynamics of the composite resonances to the Higgs potential, and tuning between the quadratic term and the quartic term is required to separate the electroweak breaking scale and the compositeness scale. We consider a composite Higgs model based on the SU(6)/Sp(6) coset, where an enhanced symmetry on the fermion resonances can minimize the Higgs quadratic term. Moreover, a Higgs quartic term from the collective symmetry breaking of the little Higgs mechanism can be realized by the partial compositeness couplings between elementary Standard Model fermions and the composite operators, without introducing new elementary fields beyond the Standard Model and the composite sector. The model contains two Higgs doublets, as well as several additional pseudo-Nambu-Goldstone bosons. To avoid tuning, the extra Higgs bosons are expected to be relatively light and may be probed in the future LHC runs. The deviations of the Higgs couplings and the weak gauge boson couplings also provide important tests as they are expected to be close to the current limits in this model.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Diogo Buarque Franzosi ◽  
Giacomo Cacciapaglia ◽  
Xabier Cid Vidal ◽  
Gabriele Ferretti ◽  
Thomas Flacke ◽  
...  

AbstractWe study the possibility of observing a light pseudo-scalar a at LHCb. We target the mass region $$2.5\,\mathrm{GeV}\lesssim m_a\lesssim 60\,\mathrm{GeV}$$ 2.5 GeV ≲ m a ≲ 60 GeV and various decay channels, some of which have never been considered before: muon pairs, tau pairs, D meson pairs, and di-photon. We interpret the results in the context of models of 4D Composite Higgs and Partial Compositeness in particular.


Author(s):  
Florian Goertz

AbstractWe review lepton flavor physics and corresponding observables in the composite Higgs framework with partial compositeness, considering ‘UV complete’ setups as well as effective and holographic approaches. This includes anarchic flavor setups, scenarios with flavor symmetries, and minimal incarnations of the see-saw mechanism that naturally predict non-negligible lepton compositeness. We focus on lepton flavor violating processes, dipole moments, and on probes of lepton flavor universality, all providing stringent tests of partial compositeness. We discuss the expected size of effects in the different approaches to lepton flavor, which will be useful to understand how a composite lepton sector could look like, given up-to-date experimental constraints.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Giacomo Cacciapaglia ◽  
Martin Rosenlyst

Abstract We present a composite scotogenic model for neutrino masses, which are generated via loops of ℤ2-odd composite scalars. We consider three different approaches to the couplings of the neutrinos (including three right-handed singlets) and the composite sector: ETC-like four-fermion interactions, fundamental partial compositeness and fermion partial compositeness. In all cases, the model can feature sizeable couplings and remain viable with respect to various experimental constraints if the three ℤ2-odd right-handed neutrinos have masses between the TeV and the Planck scales. Additionally, the lightest ℤ2-odd composite scalar may play the role of Dark Matter, either via thermal freeze-out or as an asymmetric relic. This mechanism can be featured in a variety of models based on vacuum misalignment. For concreteness, we demonstrate it in a composite two-Higgs scheme based on the coset SU(6)/Sp(6).


Author(s):  
Giacomo Cacciapaglia ◽  
Teng Ma ◽  
Shahram Vatani ◽  
Yongcheng Wu

AbstractWe present a novel paradigm that allows to define a composite theory at the electroweak scale that is well defined all the way up to any energy by means of safety in the UV. The theory flows from a complete UV fixed point to an IR fixed point for the strong dynamics (which gives the desired walking) before generating a mass gap at the TeV scale. We discuss two models featuring a composite Higgs, Dark Matter and partial compositeness for all SM fermions. The UV theories can also be embedded in a Pati–Salam partial unification, thus removing the instability generated by the $$\text{ U }(1)$$ U ( 1 ) running. Finally, we find a Dark Matter candidate still allowed at masses of 260 GeV, or 1.5–2 TeV, where the latter mass range will be covered by next generation direct detection experiments.


2013 ◽  
Vol 2013 (2) ◽  
Author(s):  
Francesco Caracciolo ◽  
Alberto Parolini ◽  
Marco Serone

2020 ◽  
Author(s):  
Vitaly Kuyukov

In this paper, we analyze the singularity of a black hole based on a modification of general relativity. There is an equilibrium condition on the Planck scale. This makes it possible to study the thermodynamics of the singularity of a black hole.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Iarley P. Lobo ◽  
Christian Pfeifer

Sign in / Sign up

Export Citation Format

Share Document