Adaptive responses to maternal nutrient restriction alter placental transport in ewes

Placenta ◽  
2020 ◽  
Vol 96 ◽  
pp. 1-9 ◽  
Author(s):  
Ashley K. Edwards ◽  
Sorin M. McKnight ◽  
Katharine Askelson ◽  
Jason R. McKnight ◽  
Kathrin A. Dunlap ◽  
...  
Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3202-3212 ◽  
Author(s):  
A. N. Sferruzzi-Perri ◽  
O. R. Vaughan ◽  
P. M. Coan ◽  
M. C. Suciu ◽  
R. Darbyshire ◽  
...  

The pattern of fetal growth is a major determinant of the subsequent health of the infant. We recently showed in undernourished (UN) mice that fetal growth is maintained until late pregnancy, despite reduced placental weight, through adaptive up-regulation of placental nutrient transfer. Here, we determine the role of the placental-specific transcript of IGF-II (Igf2P0), a major regulator of placental transport capacity in mice, in adapting placental phenotype to UN. We compared the morphological and functional responses of the wild-type (WT) and Igf2P0-deficient placenta in WT mice fed ad libitium or 80% of the ad libitium intake. We observed that deletion of Igf2P0 prevented up-regulation of amino acid transfer normally seen in UN WT placenta. This was associated with a reduction in the proportion of the placenta dedicated to nutrient transport, the labyrinthine zone, and its constituent volume of trophoblast in Igf2P0-deficient placentas exposed to UN on d 16 of pregnancy. Additionally, Igf2P0-deficient placentas failed to up-regulate their expression of the amino acid transporter gene, Slc38a2, and down-regulate phosphoinositide 3-kinase-protein kinase B signaling in response to nutrient restriction on d 19. Furthermore, deleting Igf2P0 altered maternal concentrations of hormones (insulin and corticosterone) and metabolites (glucose) in both nutritional states. Therefore, Igf2P0 plays important roles in adapting placental nutrient transfer capacity during UN, via actions directly on the placenta and/or indirectly through the mother.


2019 ◽  
Author(s):  
Joe Butler ◽  
Samuel Ngabo ◽  
Marcus Missal

Complex biological systems build up temporal expectations to facilitate adaptive responses to environmental events, in order to minimise costs associated with incorrect responses, and maximise the benefits of correct responses. In the lab, this is clearly demonstrated in tasks which show faster response times when the period between warning (S1) and target stimulus (S2) on the previous trial was short and slower when the previous trial foreperiod was long. The mechanisms driving such higher order effects in temporal preparation paradigms are still under debate, with key theories proposing that either i) the foreperiod leads to automatic modulation of the arousal system which influences responses on the subsequent trial, or ii) that exposure to a foreperiod results in the creation of a memory trace which is used to guide responses on the subsequent trial. Here we provide data which extends the evidence base for the memory accounts, by showing that previous foreperiod exposures are cumulative with reaction times shortening after repeated exposures; whilst also demonstrate that the higher order effects associated with a foreperiod remain active for several trials.


Sign in / Sign up

Export Citation Format

Share Document