The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord

2010 ◽  
Vol 91 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Sheng-Xi Wu ◽  
Wen Wang ◽  
Hui Li ◽  
Ya-Yun Wang ◽  
Yu-Peng Feng ◽  
...  
2008 ◽  
Vol 99 (6) ◽  
pp. 3144-3150 ◽  
Author(s):  
Rachel A. Ingram ◽  
Maria Fitzgerald ◽  
Mark L. Baccei

The lower thresholds and increased excitability of dorsal horn neurons in the neonatal rat suggest that inhibitory processing is less efficient in the immature spinal cord. This is unlikely to be explained by an absence of functional GABAergic inhibition because antagonism of γ-aminobutyric acid (GABA) type A receptors augments neuronal firing in vivo from the first days of life. However, it is possible that more subtle deficits in GABAergic signaling exist in the neonate, such as decreased reliability of transmission or greater depression during repetitive stimulation, both of which could influence the relative excitability of the immature spinal cord. To address this issue we examined monosynaptic GABAergic inputs onto superficial dorsal horn neurons using whole cell patch-clamp recordings made in spinal cord slices at a range of postnatal ages (P3, P10, and P21). The amplitudes of evoked inhibitory postsynaptic currents (IPSCs) were significantly lower and showed greater variability in younger animals, suggesting a lower fidelity of GABAergic signaling at early postnatal ages. Paired-pulse ratios were similar throughout the postnatal period, whereas trains of stimuli (1, 5, 10, and 20 Hz) revealed frequency-dependent short-term depression (STD) of IPSCs at all ages. Although the magnitude of STD did not differ between ages, the recovery from depression was significantly slower at immature GABAergic synapses. These properties may affect the integration of synaptic inputs within developing superficial dorsal horn neurons and thus contribute to their larger receptive fields and enhanced afterdischarge.


1996 ◽  
Vol 84 (4) ◽  
pp. 890-899. ◽  
Author(s):  
Zemin Xu ◽  
Ping Li ◽  
Chuanyao Tong ◽  
Jorge Figueroa ◽  
Joseph R. Tobin ◽  
...  

Background Nitric oxide synthase is located in the spinal cord dorsal horn and intermediolateral cell column, where it may modulate sensory and sympathetic neuronal activity. However, the biochemical characteristics of this enzyme have not been examined in these different areas in the spinal cord. Although alpha(2)-adrenergic agonists, muscarinic agonists, and nitric oxide may interact in the spinal cord to produce antinociception, these interactions have not been characterized. Methods Sheep spinal cord tissue was homogenized ad centrifuged at high sped to separate soluble and membrane-bound fractions. Nitric oxide synthase activity was determined by conversion of [(14)C]-L-arginine to [(14)C]-L-citrulline and its kinetic characteristics, dependency on cofactors, and sensitivity to inhibitors determined. Sheep spinal cord was stained for nicotinamide adenine dinucleotide phosphate diaphorase as a marker for nitric oxide synthase. Antinociception to a mechanical stimulus from intrathecal clonidine alone and with neostigmine was determined and the effects of L-arginine and n-methyl-L-arginine were determined. Results More than 85% of nitric oxide synthase activity was present in the soluble form and its kinetic, cofactor, and antagonist properties were similar to those of the neuronal isoform of nitric oxide synthase. Biochemical and histochemical studies localized nitric oxide synthase to the superficial dorsal horn and the intermediolateral cell column. Clonidine antinociception was enhanced by L-arginine and neostigmine, but not by D-arginine. Neostigmine's enhancement of clonidine antinociception was blocked by n-methyl-L-arginine. Conclusions These results confirm those of previous studies demonstrating localization of nitric oxide synthase to superficial dorsal horn and intermediolateral cell column of mammalian spinal cord, and suggesting its identity as the neuronal isoform. Spinal alpha(2)-adrenergic agonist antinociception may be partly dependent on cholinergic and nitric oxide mechanisms.


2019 ◽  
Vol 527 (18) ◽  
pp. 3002-3013 ◽  
Author(s):  
Sook Kyung Park ◽  
Angom Pushparani Devi ◽  
Jin Young Bae ◽  
Yi Sul Cho ◽  
Hyoung‐Gon Ko ◽  
...  

1993 ◽  
Vol 121 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Francis J. Liuzzi ◽  
Wutian Wu ◽  
Sheila A. Scoville ◽  
Frank P. Schinco

Sign in / Sign up

Export Citation Format

Share Document