Development of network-based probabilistic safety assessment: A tool for risk analyst for nuclear facilities

2019 ◽  
Vol 110 ◽  
pp. 178-190 ◽  
Author(s):  
Shinyoung Kwag ◽  
Jinho Oh
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 521
Author(s):  
Gyunyoung Heo

Since the publication of the first comprehensive Probabilistic Safety Assessment (PSA) study—known as WASH-1400—in the US, PSA has developed into an effective and systematic method of identifying hazards, and evaluating and prioritizing the risks in nuclear facilities [...]


2020 ◽  
Author(s):  
Evelyne Foerster ◽  
Behrooz Bazargan-Sabet ◽  
James Daniell ◽  
Pierre Gehl ◽  
Philip J. Vardon ◽  
...  

<p>The methodology for Probabilistic Safety Assessment (PSA) of Nuclear Power Plants (NPPs) has been used for decades by practitioners to better understand the most probable initiators of nuclear accidents by identifying potential accident scenarios, their consequences, and their probabilities. However, despite the remarkable reliability of the methodology, the Fukushima Dai-ichi nuclear accident in Japan, which occurred in March 2011, highlighted a number of challenging issues (e.g. cascading event - cliff edge - scenarios) with respect to the application of PSA questioning the relevance of PSA practice, for such low-probability but high-consequences external events. Following the Fukushima Dai-ichi accident, several initiatives at the international level, have been launched in order to review current practices and identify shortcomings in scientific and technical approaches for the characterization of external natural extreme events and the evaluation of their consequences on the safety of nuclear facilities.</p><p>The H2020 project “New Approach to Reactor Safety ImprovementS” (NARSIS, 2017-2021) aims at proposing some improvements to be integrated in existing PSA procedures for NPPs, considering single, cascade and combined external natural hazards (earthquakes, flooding, extreme weather, tsunamis). It coordinates the research efforts of eighteen partners encompassing leading universities, research institutes, technical support organizations (TSO), nuclear power producers and suppliers, reactor designers and operators from ten countries.</p><p>The project will lead to the release of various tools together with recommendations and guidelines for use in nuclear safety assessment, including a Bayesian-based multi-risk framework able to account for causes and consequences of technical, social/organizational and human aspects and as well as a supporting Severe Accident Management decision-making tool for demonstration purposes.</p><p>The NARSIS project has now been running for two years and a half, and the first set of deliverables and tools have been produced as part of the effort of the consortium. Datasets have been collected, methodologies tested, states of the art have been produced, and various criteria and plans developed. First results have started to emerge and will be presented here.</p>


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Gyun Seob Song ◽  
Man Cheol Kim

Monte Carlo simulations are widely used for uncertainty analysis in the probabilistic safety assessment of nuclear power plants. Despite many advantages, such as its general applicability, a Monte Carlo simulation has inherent limitations as a simulation-based approach. This study provides a mathematical formulation and analytic solutions for the uncertainty analysis in a probabilistic safety assessment (PSA). Starting from the definitions of variables, mathematical equations are derived for synthesizing probability density functions for logical AND, logical OR, and logical OR with rare event approximation of two independent events. The equations can be applied consecutively when there exist more than two events. For fail-to-run failures, the probability density function for the unavailability has the same probability distribution as the probability density function (PDF) for the failure rate under specified conditions. The effectiveness of the analytic solutions is demonstrated by applying them to an example system. The resultant probability density functions are in good agreement with the Monte Carlo simulation results, which are in fact approximations for those from the analytic solutions, with errors less than 12.6%. Important theoretical aspects are examined with the analytic solutions such as the validity of the use of a right-unbounded distribution to describe the uncertainty in the unavailability/probability. The analytic solutions for uncertainty analysis can serve as a basis for all other methods, providing deeper insights into uncertainty analyses in probabilistic safety assessment.


Sign in / Sign up

Export Citation Format

Share Document